
 
 

 

  

Abstract— Classical reinforcement learning mechanisms and 
a modular neural network are unified to conceive an intelligent 
autonomous system for mobile robot navigation. The 
conception aims at inhibiting two common navigation 
deficiencies: generation of unsuitable cyclic trajectories and 
ineffectiveness in risky configurations. Different design 
apparatuses are considered to compose a system to tackle with 
these navigation difficulties, for instance: 1) neuron parameter 
to simultaneously memorize neuron activities and function as a 
learning factor, 2) reinforcement learning mechanisms to 
adjust neuron parameters (not only synapse weights), and 3) a 
inner-triggered reinforcement. Simulation results show that the 
proposed system circumvents difficulties caused by specific 
environment configurations, improving the relation between 
collisions and captures. 

I. INTRODUCTION 
 

obot navigation has caused frequent admiration in 
human beings, certainly because of the intriguing 

capabilities announced (and sometimes confirmed). Besides, 
it is easily associated to a prosperous and intense technical 
progress. A vast range of applications are foreseen, e.g., 
surveillance, rescue, and space exploration.  

Despite the great appeal, it is not easy to conceive a 
navigation system, being considered one of the main 
challenges in artificial system research. Different approaches 
are adopted for designing navigation systems, each of which 
more suitable to some classes of environments and tasks.  

Traditional control techniques are not suitable for 
designing such systems because of the huge difficulty for 
modeling physically the problem. The unstructured character 
of the environment (including the simplest one) and the 
nonholonomic character of common robots are among the 
critical points to overcome. 

On the other hand, navigation systems based on 
computational intelligence techniques (neural networks [1], 
fuzzy systems, evolutionary computation [2] and swarm 
intelligence [3]) have reached important results. These 
systems show desirable characteristics, e.g., robustness and; 
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learning and adaptation capacities. 
Systems can be divided in two main classes: deliberative 

and reactive. Deliberative systems take decisions 
considering all information captured (or stored), including 
past information. In general such systems consider internal 
maps of the environment and the trajectory is planned 
completely a priori. Reactive systems take decisions based 
only on sensory information captured currently.  

A special feature, the learning capability, allows 
identifying a distinct and important class, namely, 
autonomous navigation systems (considered here as those 
systems that learn their navigation strategies independently 
from the designer). These systems are of special concern to 
cope with inherent difficulties associated to unknown 
environments, e.g., unpredictability and hazardousness. The 
design of systems for navigating in unknown environments 
is even more difficult, being associated with the most 
interesting applications. 

Most proposed intelligent autonomous systems are 
reactive systems [4]. Different types of navigation problems 
are considered. Usually autonomous systems learn two 
behaviors: obstacle avoidance and target seeking. 
Sometimes there is a specific sensory field for detecting 
targets [5] [6] [8]. If this is not the case, the design is more 
complex. In general, it is observed that systems generate 
undesirable behaviors, e.g., cyclic trajectories, if attractive 
objects are eclipsed [7]. 

This is the case considered in this paper: a reactive 
autonomous navigation system for mobile robots without a 
target sensory field. The main purpose of this work is to 
describe learning mechanisms that acquire navigation 
strategies that avoid undesirable behaviors. The system is 
composed of hierarchical modular neural networks that learn 
according to the classical reinforcement learning procedure 
[9]. Learning proceeds continuously (as the robot interacts 
with different classes of objects) and provides the base for 
acquisition of target seeking and obstacle avoidance 
behaviors. Despite the lack of a target sensory field, 
simulation results show that the autonomous system learns 
to generate behaviors free of cyclic trajectories and the robot 
efficiently avoids risky configurations. 

The paper is organized as follows. Existent deficiencies of 
certain autonomous systems are presented in Section II. 
Environment and robot models are described in Section III.  
The following section gives an overview about the 
autonomous system. In Section V the proposed 
enhancements for the system are described. Section VI 
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shows simulation results that confirm the effectiveness of 
the proposals. Finally some discussion points come in 
Section VII. 

II. COMMON NAVIGATION DEFICIENCIES 
The environment configuration influences the 

performance of navigation systems, in particular 
autonomous navigation systems. Navigation system 
deficiencies may be observed when the robot navigates 
through specific environments. Two kinds of navigation 
deficiencies are considered in this section: cyclic trajectories 
and inefficiencies in risky configurations. 

From this point on, including next sections, some figures 
show a global view of the navigation environment after a 
simulation. The key for understanding them is: a green 
semicircle and a black line represent the robot and its 
trajectory; and blue and yellow polygons represent repulsive 
and attractive objects, respectively. Repulsive contacts 
(collisions) are marked with small green circles and 
attractive contacts with red ones.  

Undesirable Cyclic Trajectories: Navigating in rich 
environments (e.g., an environment with a diverse 
configuration and several objects inside), an autonomous 
system is able to learn suitable navigation strategies (avoid 
repulsive objects and approach attractive objects). However, 
if the environment is not rich, the system may develop 
strange and undesirable behaviors, trapping the robot in an 
endless cyclic trajectory [8]. 

This is briefly illustrated below. We have showed that the 
system is able to learn acceptable navigation strategies [7]. 
However, a deeper analysis has revealed that the robot ends 
up in cyclic trajectories when moving/learning in certain 
environments (Fig. 1). This can be observed after a long 
series of experiments (38 trials, each lasting for 30000 
iterations). Results also show that the robot is able to capture 
both attractive objects only once [13]. 

It is important to point out that certain aspects of the 
system and environment favor the occurrence of this kind of 
undesirable behavior: the attractive objects may be eclipsed 
depending on the robot position, the system is of a reactive 
type and the robot model does not have a target sensory 
field. 

 

 
Fig. 1: Autonomous navigation system generates an endless cyclic trajectory 

in a simple environment without obstacles inside. 
 

 
Inefficiency in Risky Configurations: It is not uncommon 
that the autonomous system proposed in [7] generates 

ineffective trajectories that cause collisions when the robot 
navigates in a corner-like region, even after it has acquired 
an efficient collision avoidance strategy (considering distinct 
configurations) (Fig. 2). In general, recurrent direction 
adjustments move the robot closer and closer to the 
repulsive objects and, at the end, a fatal collision occurs [6]. 
Poor performance is also observed if the robot is located in 
an irregular corridor-like region (e.g. a corridor composed of 
a wide wall and a small object) (Fig. 2). A similar recurrence 
of events takes place also in the latter case. Particularly, 
irregular corridor configurations may bring about collisions 
problems due to an excessive repulsion behavior, e.g., to the 
extended wall.  
 

 
Fig. 2: Two common risky configurations (dotted line cuts): irregular 
corridor (left), and corner (right). 

 
Besides the damage caused by collisions, the 

aforementioned undesirable behavior brings another 
negative consequence: the robot may fail to explore the 
environment and reach its goal, which is to capture targets.  

Both these deficiencies, undesirable cyclic trajectories and 
inefficiency in risky configurations, are the focus of this 
paper. The next sections describe learning mechanisms that 
improve the performance of the autonomous system 
proposed in [7]. 

III. ENVIRONMENT AND ROBOT MODELS 
The environment of the robot is composed of repulsive 

and attractive objects. Each object has a particular color, 
denoting its respective class. Obstacles are considered 
repulsive objects.  

The robot model is shown in Fig. 3. The robot interacts 
with the environment by distance, color and contact sensors; 
and by one actuator that controls the adjustment on the 
movement direction. Sensor positions are distributed 
homogenously over the front of the robot (from -90º to 
+90º). Each position holds three sensors (for distance, color 
and contact perception). Further details about robot sensors 
are given in [7]. 

The velocity of the robot is constant. At each iteration the 



 
 

 

robot is able to execute a direction adjustment to the left or 
to the right in the range [0, 15] (degrees). 
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Fig. 3: Robot Model. 

IV. SYSTEM OVERVIEW 

A. Introduction 
It is argued that biological systems are the best reference 

for designing successful autonomous intelligent systems 
[10]. So, among several design options, the most 
biologically plausible one is the alternative most suitable to 
be chosen. This is one of the main principles adopted to 
guide the design of the system, called here The Best 
Biologically Plausible Choice Principle (BBC Principle). 

A general view of the system is described next [13]. This 
work extends the system proposed in [7]. All design steps, 
namely, architecture, reasoning and learning, are conducted 
according to the BBC Principle.  

The autonomous system is of the reactive type. The 
learning proceeds as the robot navigates. The robot 
eventually learns a suitable navigation strategy even though 
the initial performance is poor (with respect to the number 
of collisions and the robot’s exploration ability).  

In this section are only the aspects common to the system 
proposed in [7] considered. Innovations are detailed in the 
next section. 

B. Architecture 
The intelligent autonomous system corresponds to a 

neural network arranged in three layers (Fig. 4).  
In the first layer there are two neural repertoires: 

Proximity Identifier repertoire (PI) and Color Identifier 
repertoire (CI). Distance sensors stimulate PI repertoire 
whereas color sensors feed CI repertoire. Both repertoires 
receive stimuli from contact sensors. The second layer is 
composed by two neural repertoires: Attraction repertoire 
(AR) and Repulsion repertoire (RR). Each one establishes 
connections with both networks in the first layer as well as 
with contact sensors. The actuator network, connected to AR 
and RR repertoires, outputs the adjustment on direction of 
the robot. 
 
PI and CI repertoires: The neural network associated with 
each repertoire corresponds to a set of spatially-distributed 

columns of neurons. Each column of neurons is 
topologically fixed with a one-dimensional structure. There 
is no spatial influence among neurons of different columns 
(i.e. no cross-column connections). 
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Fig. 4: Autonomous system architecture. 

 
AR and RR Repertoires: A single layer of neurons form the 
AR and RR networks. The size of each network corresponds 
to the number of columns in the IP or IC networks. Each 
neuron in this layer connects to every neuron in the 
corresponding column of IP and IC networks, respectively. 
Actuator Network: There are two layers in the actuators 
network. Each neuron in the first layer is associated to a 
fixed and predefined direction adjustment value. Each 
neuron receives stimuli from neurons in RA and RR 
networks and it is also connected to the unique neuron in the 
output layer.  
Innate Repertoires: They are connected to the contact 
sensory field (not shown in Fig. 3 to improve clarity), and to 
the AR, RR, and actuator networks. The role of innate 
repertoires is to generate (attractive or repulsive) innate 
behaviors when the robot touches an object [13]. 

C. Learning 
Following the BBC Principle, the classical reinforcement 

learning theory is adopted when designing the learning 
mechanisms for the proposed neural system. 

According to this theory, reinforcement stimuli trigger 
learning processes. There are different types of 
reinforcements, some (few) innate and other acquired 
(second order reinforcement) [11] [12] [14]. Each type of 
innate reinforcement is able to elicit a specific innate 
behavior, essential to the integrity and development of the 
animal (e.g., sucking, grasping; and hunger and fear 
sensations). Innate behaviors are not associated to particular 
life experiences, but are a priori incorporated in the nervous 
system, during the epigenesis. They have a preponderant 
function in biological intelligent systems (including human 
beings), being the basis for acquiring more complex 
behaviors [12].  

Collision avoidance and target seeking behaviors are 
acquired in an analogous way shown in [7], i.e. a 
reinforcement stimulus is generated when any type of 
contact is detected. Two types of reinforcements exist, 



 
 

 

punishment and reward, detected when the robot interacts 
with repulsive or attractive objects, respectively. Whenever 
a reinforcement stimulus is received, an innate behavior is 
elicited and a learning mechanism is triggered. 

V.  AUTONOMOUS SYSTEM ENHANCEMENTS 

A. Introduction 
This section describes changes in the system model 

proposed in [7], changes with the purpose of reducing the 
deficiencies mentioned earlier. First, improvements are 
devised in order to overcome the deficiencies associated 
with unsuitable cyclic trajectories. This system is called 
System 1. Secondly, new changes are considered for 
improving the system performance when the robot is 
moving in a risky configuration region (reducing the number 
of collisions). The system resulting from this second set of 
improvements is referred to as System 2. 

B. Suppressing Cyclic Trajectories 
New models are described for the PI and RR repertoires 

(reasoning and learning) and a new innate behavior is 
defined. This section focuses on the design of System 1. 

 
1) Innate Monotony Module 
Experiments have shown that cyclic trajectories are 

associated with a monotonic state. A monotonic state is a 
sequence of navigation decisions in which the system does 
not detect any repulsive or attractive contacts during a long 
time interval [8].  

The proposed system exploits this correlation, being able 
to detect monotonic states. This is an important role of the 
innate monotony module, considered as a part of the innate 
repertoires shown in Fig. 4. Besides, this innate module also 
triggers a particular learning process by an internally 
triggered reinforcement.  

A fairly short time interval (2300 iterations) without 
contacts is initially sufficient to trigger the learning process. 
This time interval is then increased each time a monotony 
event is detected (see equation below), being bounded from 
above by a maximum of 8000 iterations: 
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2) PI Repertoire Reasoning 
The new neuron model for the PI repertoire is as follows: 

Consider [ ]T
m
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m

k
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the input (distance sensors) and synaptic weight vectors, 
respectively. The output of neuron j in column k; k = 
1,2,...,q; j = 1,2,...,l; at iteration n, is defined as in (1): 
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where: φ  and Θ  are constant parameters; )(nu k

j  is an 

adjustable parameter defined in (5) and (6). 
Note that, according to (1), only the winner neuron 

)),(( Θni kk x  is fired at each iteration n. 

The set kW  consists of neurons in column k that have 
previously been winners. Neurons in kW , the proud 
neurons, are fired only if the input pattern is sufficiently 
similar to the synaptic weight vector (this similarity is 
determined by the acceptance parameter Θ ) [13]. 

 
3) PI Repertoire Learning: 
A learning mechanism is triggered if either a repulsive 

contact or monotony state is detected.  
Repulsive Contact Event: If a repulsive contact event 
occurs, at iteration n, the learning adjusts parameters as 
follows. Consider the kth column selected for learning (see 
[7]). Only winner neuron parameters, synaptic weights 

)(njw  and activation potential )(nu j
, are adjusted according 

to (4) and (5): 
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where: ),( Ο= njj k  (the winner neuron is determined 
analogously to (3), substituting Ο  for Θ ) and; Ο  and ε  
are constants. 
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where η̂  and γ  are constants. 

This new learning is more accurate than in [7] because of 
the addition of “proud” neurons: a neuron outside the set 

kW  is selected for storing a new pattern only if the latter is 
sufficiently distinct from a stored pattern in kW  (first 
statement in the calculation of j in (3)): in this case the set 

kW  increases by one; otherwise, a synaptic adjustment on a 
neuron which has already been winner is accomplished 
(second statement in (3)).  

 



 
 

 

Monotony Event: If a monotony event occurs, then only the 
activation potential )(nu j

, j = 1,2,…,l, is adjusted according 

to 
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where: },...,2,1and)(/{ qrnerk r =>∈ τ ; )(nek  is defined 

in (8) and τ  and mη  are constants. 
 

4) RR Repertoire Reasoning 
It is observed that the RR network develops a particular 

activation when unsuitable cyclic trajectories occur (see 
[13]). In order to find out which neurons contribute to the 
occurrence of this undesirable behavior, a new model is 
proposed for the RR repertoire. The model includes a 
parameter, called degree of activity, which has memory-like 
properties, providing a way to identify these neurons [13].  

The neuron model for the RR repertoire is as follows. 
Consider [ ]T

m
k xxxn ,...,,)( 21=x  and [ ]T

m
k
j wwwn ,...,,)( 21=w , 

the input (distance sensors) and synaptic weight vectors, 
respectively. The output of neuron j in RR network, j = 
1,2,...,q; at iteration n, is defined in (7): 
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where: )()( nns jjj wx ⋅=  is the inner product between the 

input vector and the synaptic weight vector; and α and βη  

are constants. 
The parameter  )(ne j

, called degree of activity, is defined 

as 
 

  
,otherwise    )()(

;  if    )()(
)1(

⎪⎩

⎪
⎨
⎧

−

>+
=+

nene

ynene
ne

jj

jjj
j σ

κϕ  (8) 

 
where: ϕ; σ  and κ  are constants. 

Observe that   )(ne j
functions as a kind of memory for the 

neuron activity, having an important role in the repertoire 
learning mechanism.  

 
5) RR Repertoire Learning 
If a monotony event occurs at iteration n, then synaptic 

weights and parameters are adjusted only for neurons whose 
degree of activity is greater than a threshold. The 
adjustments are given by (9) and (10): 
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where },...,2,1)(/{ qrandnerk r =>∈ τ , )(ner  is defined 
in (8) and η  is a constant. 
 

1)( ββ =n ; (10) 
 

The adjustment above influences the activation function 
of neurons in RR repertoire. Note that )(nβ  evolves to 0β  
according to (7). 

C. Avoiding Risky Configurations 
This section focuses on the design of System 2. The 

proposed scheme is integrated to the one described in the 
previous section, that is, System 2 is composed of System 1 
as well as of the enhancements proposed next in this section. 

This section describes new improvements to the neuron 
model for the PI repertory. In fact only the parameters φ  
and Θ  are considered (see Equations (1), (2) and (3)). 
These parameters, constant in the previous neuron model, 
become adjustable, i.e. they are )(nφ  and )(nΘ  from now 
on.  

The parameters are defined as follows:  
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where: ψ , ν , 

ay , by , 1α , 2α , 3α , φ~ , φ̂ , and δ are 
constants.  
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where 1β , Θ~  and Θ̂  are constants, and δ  is such as in (11). 

(Note that the dynamics of φ  and Θ  are different from 
the neuron output’s dynamics.)  



 
 

 

VI. SIMULATION RESULTS 

A. Introduction 
This section shows evaluations for both systems 1 and 2, 

considering robustness as the general criterion. That is, their 
performances are evaluated for the cases in which 
navigation problems are brought about by specific 
environments. 

Experiments are organized in two parts. The first part 
aims at confirming the capability of both systems for 
suppressing cyclic trajectories. The second part shows 
evaluations of the systems when the robot navigates in risky 
configuration regions. 

B. Simulation Parameters  
Environments and robot: The environments considered are 
those shown in Section II. The robot model has 67 sensor 
positions and its velocity is 0.28 distance units per iteration. 
System 1: The parameters considered for System 1 are: 
 

1- RR Repertoire:  
It is structured in a single layer of 12 neurons (l). The 

weights are randomly initialized in the interval [0, 0.07]. 
Other initial values are 001.0=κ ; ϕ  = 0.02; σ = 0.0005; 

βη =0.002; 0β =1.01; α  = 1.3; 1β  = 2.5; )0(je =1;  

)(ne j ∈ [0.1, 5]; )0(β = 1.1; η = 0.65. 

 
2- PI  Repertoire:  
The structure consists of 22 columns (q) each with 12 
neurons (l). The weights are randomly initialized in the 
interval [0,1]. Other initial values are ;63.0=Θ  

;26.0=Ο  η̂ =0.7; φ = 0.5; mη =0.09; τ =0.1; ε = 0,6; γ  
= 0,6; ;7.0)0( =jη  )0(ju = 0.06;  
 
3- CI Repertoire (see [7]):  
CI repertoire is structured identically to PI repertoire. The 

weights are randomly initialized considering the interval 
[0,1]. Synaptic adjustments in CI network (defined in [7]) 
use a varying learning rate (similar to (4)) with 9.0)0( =jη ; 

5)0( =jm ; 

 
4- AR Repertoire (see [7]): 

'η = 0.8; 
 
5- Monotony Detection: 

2300)0( =λ ;  [ ]8000,2300)( ∈nλ  
 
System 2: The parameter configuration for System 1 is also 
considered for System 2. Also, the parameters associated 
with (11) and (12) are φ~ =0.007; φ̂ =0.4; 1α =0.9; 2α =0.03; 

3α =0.4; Θ~ =0.2; Θ̂ =0.63; 1β =0.08; ay =0.55l; by =0.93l; 

)0(Θ = Θ̂ ; )0(φ =φ̂ . 

C. Experiments: Cyclic Trajectories 
The system is evaluated by considering its capability for 

suppressing cyclic trajectories. Simulation experiments are 
carried out in the environment shown in Fig. 1 (Section II), 
where cyclic trajectories are observed for the system 
described in [7]. 

The experiment consists of 30 runs (for each system), 
each with 150000 iterations. Three different initial robot 
positions are considered (each third of the experiments is 
done considering a distinct initial robot position). 
System 1: An example run, randomly chosen, is shown in 
Fig. 5 and the respective performance evolution, in Fig. 6. 
After the last monotony event is detected, the robot develops 
a suitable trajectory; the cumulative number of collisions 
becomes constant (i.e. the robot does not collide anymore) 
and the cumulative number of target captures grows linearly 
with time. 

 

 
Fig. 5: A suitable navigation strategy is finally found after sufficient 
monotony events (not shown) – System 1. 
 

The autonomous system is able to learn a suitable 
navigation strategy even in simple environments (where the 
number of objects is reduced) since monotonic events 
provide stimuli to trigger the learning mechanisms. Free of 
cyclic trajectories (and collisions), the robot keeps 
effectively and permanently working to reach targets, 
considering both systems 1 and 2. 

 

 
Fig. 6: Learning evolution (System 1): monotony events, number of 
collisions (with obstacles) and number of target captures are represented by 
vertical lines and, blue (upper) and yellow (lower) lines, respectively. 
 
System 2: Fig. 7 shows the trajectory of a run (randomly 
chosen). The respective performance evolution is registered 
in Fig. 8. The general aspects are similar to System 1, i.e. 
System 2 is able to suppress cyclic trajectories, achieving an 



 
 

 

acceptable performance. 
 

 
Fig. 7: After sufficiently many monotony stimuli, the robot develops a 
suitable navigation strategy - System 2. 

 

 
Fig. 8: Learning evolution for System 2 in Fig. 7. The cumulative number of 
collisions (blue) becomes constant after 80000 iterations (i.e. the robot does 
not collide anymore) and the number of captures (yellow) grows rapidly 
with time (i.e. the robot is an efficient hunter). 

 
Discussion: Simulation results are summarized in Table I. 
The number of monotonic events is relatively small, 
considering the number of captures, collisions and total 
iterations. System 1 is better, on average, than System 2 
considering the number of collisions and number of 
captures. However, the results are not fully unbiased since 
the number of runs (30) is small [13]. (Parameter tuning for 
System 2 may improve system performance in this case.) 

 
TABLE I 

EXPERIMENT STATISTICS 
Mean Collisions Captures Monotonies 

System 1 72 47 5 
System 2 84 44 7 

D. Experiments: Risky Configuration 
The comparison criterion adopted for evaluating Systems 

1 and 2 is the ability to guide the robot through a risky 
region. The environment shown in Fig. 2 is considered for 
evaluation since its complexity is sufficient for causing poor 
autonomous navigation system performance (as shown in 
Section II). 

The experiment consists of 22 runs for System 1 and 18 
runs for System 2, each with 150000 iterations. 
System 1: A run, randomly chosen, is shown in Fig. 9. The 
robot continually collides against obstacles, mainly when it 
crosses corridors or approaches corners. 

Fig. 10 shows the respective performance evolution. 
Repulsive contacts keep increasing until the end of the 
simulation, indicating that System 1 is unable to learn a 

suitable strategy for navigating in risky configuration areas.  
 

 
Fig. 9: System 1 displays a poor performance. 
 

 
Fig. 10: Learning evolution for system 1 in Fig. 9. The cumulative number 
of collisions (blue) never becomes constant (i.e. the system continues to 
collide with obstacles) and the number of captures (yellow) grows slowly 
with time (i.e. the robot is not an efficient hunter). 
 

Note that System 1 squanders part of navigation taking 
collision trajectories. This behavior, as expected, affects the 
target seeking behavior negatively, reducing the number of 
target captures (compare with System 2, see Table II). 
System 2: A run, randomly chosen, is shown in Fig. 11. The 
robot follows a trajectory primarily characterized by a target 
seeking behavior. 
 

 
Fig. 11: System 2 achieves a good performance in the same environment 
where System 1 fails (compare with Fig. 9). 

 
The good performance is confirmed in Fig. 12. The 

autonomous system learns how to explore the environment 
effectively after a few collisions (collisions are imperative 
so any autonomous system will develop an acceptable 
collision avoidance behavior). System 2 generates a suitable 
trajectory, nearly completely free of collisions, and 
accumulates a large number of captures. 
Discussion: Table II summarizes experiment statistics. The 
difference in number of collisions in favor of System 2 is 
impressive. There are 527% more collisions for System 1 
and 21% more captures for System 2. 



 
 

 

 
Fig. 12: Learning evolution for System 2 in Fig. 11. The cumulative number 
of collisions (blue) becomes approximately constant after 80000 iterations 
(i.e. the robot does not collide anymore) and the number of capture (yellow) 
grows quickly with time (i.e. the robot is an efficient hunter). This figure 
should be compared to Fig. 10 which shows how System 1 performed in the 
same environment. 
 

TABLE II 
EXPERIMENT STATISTICS 

Mean Collisions Captures 
System 1 445 317 
System 2 71 384 

VII. CONCLUSION 
Autonomous navigation systems may be vulnerable to 

environment configuration, that is, undesirable robot 
behaviors, associated with a poor performance, can be 
observed depending on the environment configuration. Two 
such kinds of behaviors are considered: cyclic trajectories 
and inefficiency in risky configurations. 

An autonomous navigation system is proposed based on 
two intelligent computation techniques: neural networks and 
classical reinforcement learning. The robot model does not 
have a specific target sensory field. As it guides the robot, 
the autonomous system learns to distinguish attractive 
objects from repulsive ones, developing coherently the 
appropriate responses (to approach or to avoid). 

Several instruments are considered to create a system able 
to autonomously circumvent navigation difficulties, for 
instance: 1) design of a neuron parameter for functioning 
simultaneously as a memory of the neuron activity and as a 
learning factor, 2) conception of learning mechanisms for 
adjusting neuron parameters (not only synaptic weights) and 
3) definition of a inner-triggered reinforcement. 

For comparison purposes, different versions of the system 
are evaluated. Distinct environments are considered in order 
to investigate the learning capabilities for suppressing cyclic 
trajectories and achieving good performance when 
navigating in risky areas. Simulation results confirm that 
only the most refined system develops a relative good 
performance for both kinds of situations, particularly 
considering the second one (navigation in risky areas). 
Experiments show that the number of collisions is 
drastically reduced and the number of captures is increased 
as the navigation evolves, independent of narrow corridors, 
corners or desert (void) areas. 

It is observed that the constant parameter values chosen 

are not critical, that is, they can vary over a wide range 
without degrading the system performance. Despite this 
favorable first impression, this characteristic may be an 
interesting theme for future works, including coupling 
parameter degree and adjustment mechanisms (supported by 
classical reinforcement learning strategies) in order to find 
suitable parameter values. 
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