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Abstract. Autonomous mobile robots form an important research topic in the field
of robotics due to their near-term applicability in the real world as domestic service
robots. These robots must be designed in an efficient way using training sequences.
They need to be aware of their position in the environment and also need to create
models of it for deliberative planning. These tasks have to be performed using a
limited number of sensors with low accuracy, as well as with a restricted amount of
computational power.

In this contribution we show that the recently emerged paradigm of Reservoir
Computing (RC) is very well suited to solve all of the above mentioned problems,
namely learning by example, robot localization, map and path generation. Reservoir
Computing is a technique which enables a system to learn any time-invariant filter
of the input by training a simple linear regressor that acts on the states of a high-
dimensional but random dynamic system excited by the inputs. In addition, RC is
a simple technique featuring ease of training, and low computational and memory
demands.

Keywords: reservoir computing, generative modeling, map learning, T-maze task,
road sign problem, path generation

1. Introduction

Small and energy efficient autonomous mobile robots form an impor-
tant research topic in the field of robotics. This is mainly due to their
near-term real world applicability as domestic service robots (such as
e.g. the small and cheap iRobot service robots). These robots must be
easy to teach or program using training sequences. In order to make
them function properly in complex and changing environments, they
need to be aware of their position as well as to create models of the envi-
ronment for deliberative planning. All of this has to be performed using
a limited number of sensors with low accuracy, and with a restricted
amount of computational power.

This work considers the use of Recurrent Neural Networks (RNN) as
a means to solve several problems in mobile robotics. In particular, we
are interested in using Reservoir Computing (RC) networks for learning
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robot controllers by example, performing efficient and robust robot
localization, and constructing implicit environment maps.

Reservoir Computing has been introduced in [20] as a term which
unifies three similar computing techniques: Echo State Networks (ESN)
[8], Liquid State Machines (LSM) [12], and BackPropagation DeCor-
relation [18]. All three techniques use a reservoir of recurrent nodes
with fixed and randomly generated weights, while only an output layer
(readout) is trained with simple linear regression techniques (see Figure
1). The general applicability and easy of training of RC has been shown
in several fields [7, 20, 17].

Robots operating in real indoor environments need to possess ro-
bust mechanisms for self-localization so that they can become fully
autonomous. This task is considered to be difficult [4]. Traditional algo-
rithms based on the Simultaneous Localization and Mapping (SLAM)
concept are expensive to implement due to their limited computational
efficiency and also hold uncertainties during the calculation of the
robot’s pose [4].

Several models in the literature make use of neural networks for
map learning in mobile robotics [19]. In [3], a Khepera robot is used
to validate a neural network model that learns spatial representations
of the environment in the exploration phase (visual stimuli and path
integration are the input) while goal-oriented navigation is accom-
plished by reinforcement learning a posteriori. Other approaches use
Self-Organizing Maps for map learning [10, 13]. Several proposals seek
to model the place cells found in the hippocampus of rats for implicit
map learning and navigation [3]. These cells are activated only when
an animal is located at a specific region of the environment.

The robot localization using RC, which we present in this work,
forms an implicit model which is based solely on the robot’s sensory
input history. This setting enables efficient robot localization, although
it currently still needs to be trained in a supervised way [2].

We will show not only that RC can be used for localization, but that
the same setup can very easily be used to model the robot controller
itself, to generate an explicit map of its environment, and even to
make long-term prediction of how the controller would react in the
environment by both predicting the robot’s sensory input as well as
the controller’s response (or the robot position). The robot, in some
sense, can dream of how it would react in the future in the current
environment. In addition, a higher-order decision system can be built
with a scheme where the decision module considers these long-term
predictions as relevant input. This can be accomplished by modeling
several simple reactive behaviors and generating (dreaming) long-term
expectations for each one in order to switch to the most appropriate
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behavior at some point in time. This kind of system is also biologi-
cally plausible, showing that even simple animals could make long-term
predictions about their current actions in the environment.

The innovative nature of this work derives from three main factors:
efficient and easy learning of RC networks; the temporal integration of
sensory information (by the reservoir which offers a rich pool of dy-
namics); and the exploitation of the aforementioned characteristics on
mobile robot navigation. First, training a RC network is much simpler
than training a RNN with standard algorithms (e.g., Backpropagation
Through Time) which exhibit slow convergence on training. Second,
the short-term memory capabilities of RC networks provide a very im-
portant setting for temporal processing of sensory data. Last, building
implicit environment configurations with RC networks becomes easier
because of its attractive properties.

This paper is organized as follows. Section 2 presents the Echo State
Network model used for the experiments in this work as well as the
robot model and controller used for generating the training and test
datasets. Next, four different experimental setups are worked out (Fig-
ure 2). The first setup (Figure 2(a)), elaborated in Section 3, considers
the modeling of a robot in a T-maze task by imitation learning (i.e., a
RC network is trained to output the robot’s actuators given distance
and color sensors as input). Next, in Section 4, a RC network is used
for robot localization by training it to estimate the robot coordinates
and heading given the distance sensors as input to the network (Fig-
ure 2(b)). The following section (5) elaborates on effective map learning
and generation, which is achieved by letting the resevoir predict the
robot’s distance sensors given its location as input to the network
(Figure 2(c)). The simultaneous generation of paths and environmental
perceptions is tackled in Section 6, where a reservoir is trained both
ways: to predict the distance sensors as well as the robot’s position
(Figure 2(d)). Finally the main points of this work and directions for
future research are presented in Section 7.

2. Methods

2.1. Reservoir computing

In this work the Echo State Network model [8] is employed for the
experiments on the T-maze task, position detection, map learning and
path generation. An ESN is composed of a discrete hyperbolic-tangent
RNN (i.e., the reservoir) and of a linear readout output layer which
maps the reservoir states to the actual output. For the supervised
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Figure 1. Reservoir Computing network.

training of the ESN, we consider the state update and output equations
as follows:

x(t + 1) = f
(
W res

res x(t) + W res
inpu(t) + W res

outyd(t) + W res
bias

)
(1)

y(t + 1) = W out
res x(t + 1) + W out

inp u(t) + W out
out yd(t) + W out

bias (2)

where u denotes the input, x represents the reservoir state, y is the
output and f() = tanh() is the hyperbolic tangent function. Note that,
during training, the output signal is teacher-forced to the reservoir by
using the desired output yd in the right side of the above equations.

After training, the state-update and output equations become:

x(t + 1) = f
(
W res

res x(t) + W res
inpu(t) + W res

outy(t) + W res
bias

)
(3)

y(t + 1) = W out
res x(t + 1) + W out

inp u(t) + W out
out y(t) + W out

bias (4)

where now the actual readout outputs instead of the desired signal are
considered in the right hand-side of the equations.

All weight matrices to the reservoir (W res· ) are initialised randomly
(represented by solid arrows in Figure 1), while all connections to the
output (W out· ) are trained (represented by dashed arrows in Figure 1).
The exact timing of all the different components in these equations is
important. The initial state is set to zero. Note that for the various
experiments in this work we will not always use all the W ·· matrices.
For each experiment we will elaborate on the exact setup.

Training is performed using ridge regression, where the regulari-
sation parameter is found by grid search on a validation set. The
computational efforts for training are related to computing the trans-
pose of a matrix and matrix inversion. It takes just few seconds to
train a RC network for the experiments in this work on an Intel Core2
Duo processor-based system. Once trained, the resulting RC-based sys-
tem can be used for real-time operation on moderate hardware since
the computations are very fast (only matrix multiplications of small
matrices).
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(a) Setup 1 (b) Setup 2

(c) Setup 3 (d) Setup 4

Figure 2. (a) T-maze task modeling. The inputs to the reservoir (circle) are distance
and color sensors. The output is the robot actuator (the current direction adjust-
ment). (b) The reservoir is used as a pose detector given the current (distance)
sensors as input. (c) Generative setting where the RC network explicity outputs a
map of the environment given the actual robot position (x, y) and heading (h) as
input. (d) The same reservoir is used for both sensor prediction and pose detection.

Some experiments in this work consider output feedback into the
reservoir (i.e., the weight matrix W res

out is set accordingly). In this case,
note that the values which are fed back are the actual output y(t)
calculated by the readout output layer. The output is thus generated
in free-run mode.

The Normalized Mean Square Error (NMSE) is used as a perfor-
mance measure throughout this work and is defined as:

NMSE =
1
M

M∑

i=1

〈(yi
d − yi)2〉
σ2

yi
d

(5)

where the sum is over M readout outputs, the numerator of the sum-
mand is the mean square error of the ith readout output and the
denominator is the variance of the ith desired output.

2.2. Reactive robot controller

The datasets used to train RC networks are generated by a simulator
used in [1]. The environment of the robot is composed of repulsive
and attractive objects. Each object has a particular color, denoting its
respective class. Obstacles are considered repulsive objects while targets
are attractive objects [1]. The robot model is shown in Figure 3. The
robot interacts with the environment by distance, color and contact
sensors; and by one actuator that controls the movement direction.
Sensor positions are distributed uniformly over the front of the robot
(from -90◦ to +90◦). Each position holds three sensors (for distance,
color and contact perception) [1]. In this work, the robot model has 17
sensor positions. The distance sensors are limited in range and are noisy
(they exhibit Gaussian noise on their readings). For distance sensors,
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Figure 3. Robot model.

a value of 0 means collision or very close to some object and a value of
1 means the furthest distance from an object. The color sensor results
from a normalization of the component Hue of the Hue-Saturation-
Value (HSV) color system. The speed of the robot is constant. At each
iteration the robot is able to execute a direction adjustment to the left
or to the right in the range [0, 15] degrees.

The robot controller (based on [1]) is composed of hierarchical neural
networks which are adjusted by classical reinforcement learning mech-
anisms. The controller constructs its navigation strategy as the robot
interacts with the environment. Only already trained robot controllers,
which all show very good exploratory behaviour after training, are used
for generating data. Note that the results in this paper are not critically
dependent on this specific robot controller. The data (from distance and
color sensors, and actuator) collected from the robot simulator are used
to train and test reservoir networks in a Matlab environment using the
RCToolbox1 [20].

3. Modeling a controller with long-term memory: the
road-sign problem in the T-maze

In this section we will demonstrate that a RC-based system is able
to model (learn) a robot controller that needs long-term memory to
perform its task. To achieve that we use the simulation setup shown in
Figure 2(a), where the reservoir has to drive a robot given its sensory
input. No feedback connections to the reservoir are used.

The experiments are performed in a T-maze environment that has
a T-shape in which a robot is positioned initially at the end of the
longest arm (corridor) (Figure 4). The goal for the robot is located
at the upper T-arm located at the same side as an initial sign shown
at the beginning of the main corridor. We use the reactive controller

1 This is an open-source Matlab toolbox for Reservoir Computing which is freely
available at http://www.elis.ugent.be/rct
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to generate trajectories that can be learned by the RC system, but
since the reactive controller cannot solve the road-sign problem, we
have to help it by placing attractive objects at the beginning of the
corridors it has to turn into (marked by crosses in Figure 4). These
attract the robot to the correct goal (so the reactive controller does not
solve the T-maze task). These objects are not visible to the RC system.
The reservoir thus has to learn the long-term temporal dependencies
between relevant events (i.e., the sign in the corridor and the decision at
the T-junction) which are demonstrated by the recorded trajectories.
We consider distinct sizes for the T-maze in order to test the memory
capacity of RC networks (see Figure 4).

The reservoir configuration in this section is as follows. The inputs to
the network are distance and color sensors totalling 34 inputs which can
range from 0 to 1 (for distance sensors, 0 means near and 1 means far -
see previous section). The reservoir is composed of 400 sigmoidal nodes,
scaled to a spectral radius 2 of |λmax| = 0.9 [6], which approximately
sets the reservoir at the edge of stability. The readout layer has 1
output unit which corresponds to the robot actuator (i.e., the direction
adjustment, as the robot has constant speed). The weight matrix from
input to the reservoir is initialized at the values -0.2, 0.2 and 0 with
probabilities 0.15, 0.15 and 0.7, respectively. This parameter setting for
weight matrices are not critical for the tasks in this work (as you will
see, a different configuration is used for other experiments).

The original dataset collected from the simulator is downsampled3

by a factor of 100, which is equivalent to slowing down the reservoir
time scale [16, 9]. This is because the robot has a relatively constant
low velocity, taking about 1300 timesteps to go from the start position
to the goal in environment E1 (Figure 4).

The datasets (sensory inputs and motor output) collected from the
simulator are divided in three parts, where two parts are used for
training and the other one for testing. The current stage of the work
does not include the test of the RC network as a controller embedded
in the simulator. It is only tested on pre-recorded sensory inputs from
the simulator (not real-time). The training is performed based on a
3-fold cross validation with ridge regression as the learning algorithm.
We add a large amount of noise on distance sensors (Gaussian noise
from N(0, 0.2) which means effectively N(0, 60) in distance units) and
on color sensors (Gaussian noise from N(0, 0.1)) before resampling the

2 The spectral radious λmax is an eigenvalue of the matrix W res
res with the largest

absolute value.
3 The downsampling of the data is made with the Matlab resample function

unless stated otherwise
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Figure 4. T-maze environments. Dimensions are given in distance units (d.u.). In
the T-maze task, a sign at the left (right) indicates that the goal is at the left arm,
in G1 (right arm, in G2). Crosses mark the positions of attractive objects which
are visible to the reactive robot controller (which automates the generation of the
training samples) but not for the RC network. Note that both 2 signs are shown in
the figure for visualization purposes (the robot only sees 1 sign).

Figure 5. Predicted robot paths. Each point of the desired trajectory is marked by
an asterisk while circles represent points of the predicted robot path. From left to
right are the plots for T-mazes E1, E2 and E3 respectively.

dataset (which are high noise rates when compared to [15] who consider
noise-free data).

Results are summarised in Table I. Each experiment has a dataset
with 60 examples (each example is built with sensor and actuator sam-
ples from a robot going from the start position to the goal position).
Each experiment is evaluated 30 times (runs) with different stochas-
tically generated reservoirs and the results (error) are averaged over
these 30 runs.

Remember that the output of the RC system is the actuator of
the robot. To evaluate whether the predicted trajectory is correct (i.e.
whether the reservoir is able to drive the robot through the T-maze and
solve the task correctly), we plot the real trajectory and the predicted
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Table I. T-maze task resultsA.

Environment Training NMSE Test NMSE No. Effective Trajectories

Mean Std Mean Std Training Test

E1 0.0144 0.0009 0.0220 0.0015 40/40 20/20

E2 0.0338 0.0021 0.0638 0.0041 40/40 19/20

E3 0.2074 0.0410 0.3122 0.0509 20/40 8/20

A. For the fourth column, 40 trajectories is the maximum value of effective
trajectories for the training set and 20 for the test set.

trajectory by moving two points in X and Y coordinates as they were
driven by the desired and predicted actuators, respectively. Figure 5
shows three plots for T-mazes E1, E2 and E3. They show the real tra-
jectory of the robot (each point given by an asterisk) and the trajectory
formed by reading the reservoir responses (each point represented by
circles). Note that the predicted trajectory was built by stimulating the
reservoir with test data not contained in the training data.

It is easily seen that as the size of the corridor increases the difficulty
for getting a 100% effective reservoir is higher. For T-mazes E1 and E2,
the test error is very low (Table I), while for the longer T-maze E3,
the error significantly increases. This demonstrates that the reservoir’s
memory is limited, and that, as the corridors get longer, it is more
difficult to remember the initial signal. This can also be seen through
visual inspection of the reservoir’s performance (i.e., comparing the real
and predicted trajectories). This is done by training a reservoir network
on a number of examples, and counting the number of effective trajec-
tories for the training and test sets (whose size are 40 and 20 examples
respectively). The results are also shown in Table I. Note that we would
expect increase in performance if the experiments were accomplished
in real-time (i.e., the RC network embedded in the simulator would
drive the robot in real-time) because the distance sensors would reflect
the environmental perception changes caused by the actuator which is
controlled by the RC network.

The memory of the reservoir can become greater by increasing the
resampling rate[16], or by slowing down the reservoir dynamics (which
is equivalent to adding leaky integrators) [9]. However, there are lim-
itations for slowing down the dynamics since the reservoir still needs
to be fast enough to generate the turning movement into the narrow
corridors.
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4. Position detection

Robot localization is a pre-requisite for making a robot fully autonomous
in indoor environments. Localization usually requires the building of
an explicit map of the environment which is then used to improve the
estimation of the robot pose given by dead reckoning. In this section
we show that it is possible to use a RC network as a position detector
by only considering the history of the robot’s sensory inputs. This
setup was first demonstrated in [2] where by labelling specific locations
in the environment, the RC system was able to perform localization
in the form of a classification task (this is also achieved with Long
Short-Term Memory networks in [5]). This section shows that a RC
network can also perform position estimation in the form of a regres-
sion task where the exact coordinates are expected as output. We use
the RC setup shown in Figure 2(b) where the estimated positions are
fed back into the reservoir. This additional stimulation endows the
reservoir with long-term memory [11] for the position estimation task
effectively improving its performance (the fading memory of a reservoir
without feedback connections from the readout layer is not enough for
satisfactory performance).

The environments used for the current task are shown in Figure 6.
The first one is a long T-maze environment which is used to test the
memory capacity of the RC network. When the robot is driving along
the longest corridor, the frontal distance sensors do not detect the end-
ing corner of the corridor which is out of range. Therefore, for correct
position detection, it is strictly necessary that some sort of short-term
memory is present in the reservoir.

The simulations for the generation of trajectories are explained in
the following. The robot trajectory in environment E4 depends on the
current visible target - only a (randomly chosen) attractive object is
visible at a time. The controller keeps on capturing targets indefinitely
during simulation (a target is hidden when captured and another one
is made visible). In environment E5, the robot’s trajectory depends
on the dynamics of the blinking objects (see Figure 6) and Gaussian
noise is added to the motor output, influencing the trajectory as well.
This diversification of trajectories is accomplished in order to make
it more difficult for the prediction problem while it is not critical for
the results. The RC network is configured in the following way for
experiments with environment E4. The inputs to the network are the
distance sensors. The reservoir has 400 nodes, whose connection matrix
is scaled to a spectral radius of |λmax| = 0.9 [6]. The readout layer has
3 output units which corresponds to the normalised robot coordinates
and heading. The weight matrices from inputs and outputs to the
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(a) E4

(b) E5

Figure 6. Environments used for position detection and map learning experiments.
Dimensions are given in distance units (d.u.). (a) Long T-maze environment. Lo-
cations are marked by small labeled triangles and attractive objects are located at
each arm’s corner. (b) Complex room environment with two dynamic objects at
locations 8 and 30 which blinks by random time intervals (blocking or freeing the
robot’s way).

reservoir are initialized at the values -0.4, 0.4 and 0 with probabilities
0.2, 0.2 and 0.6, respectively.

Both ridge regression for the output training and the adding of
Gaussian noise with variance of 0.001 to the state update equation
are used for regularisation. Only using ridge regression is not enough
to get stable output feedback behaviour. The original dataset from the
simulator is downsampled by a factor of 30. The resulting dataset is
divided in two parts of 2400 and 1200 timesteps which are used for
training and testing, respectively.

The differently configured parameters for experiments with environ-
ment E5 are presented next. The reservoir size is 800 neurons. The
weight matrices from inputs (outputs) to the reservoir are initialized
at the values -0.6, 0.6 and 0 (-0.025, 0.025 and 0) with probabilities
0.25, 0.25 and 0.5 (0.15, 0.15 and 0.7), respectively. The dataset is
downsampled by a factor of 50. The training and test datasets consist
of 5600 and 800 timesteps after resampling, respectively.
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The results on test data can be seen in Figure 8. The first plot
shows that the RC system can cope very well with the long T-maze.
The robot trajectory is not completely repetitive: between timesteps
200 and 400, the robot captures two targets (see the changes on Y
coordinate) whereas between timesteps 800 and 1200, four targets are
captured (the Y robot coordinate fluctuates for a longer period). The
average NMSE over several generated reservoirs (30 runs) is 0.025 with
standard deviation of 0.02.

The second plot shows the performance on test data for environment
E5. This second experiment required more parameter tuning than the
first one due to the apparent increased complexity associated with the
robot trajectory (see Figure 8). Nonetheless, the RC network correctly
follows the target robot coordinates (x,y and heading). The average
NMSE over 30 runs is 0.283 and the standard deviation is 0.072.

Consider that the task of robot localization has to be accomplished
even in the presence of faulty sensors. If these broken sensors can be
detected and then predicted with some technique, we obtain a fault-
tolerant robot localization system. Consider Setup 4 now (Figure 2(d)).
By creating connections from the same reservoir to the sensors and let-
ting them to be output nodes which can be trained, we establish a way
of using the same reservoir for sensor prediction and robot localization.
In Figure 7, we can compare the results from experiments using Setup 2
(dashed line) and Setup 4 (solid line). We consider the task of position
estimation in environment E5 (complex room) and the same training
and test datasets. Each experiment is executed 20 times considering
that in the test dataset randomly chosen sensors are broken (by setting
their outputs to zero). As the number of broken sensors increases, the
RC network configured with Setup 2 deteriorates notably but gracefully
in performance. On the other hand, the generative setting which pre-
dicts the broken sensors can cope very well with the faulty sensors (as
opposed to SLAM, RC-based localization can deal with broken sensors
and does not need expensive laser scanners, although currently we still
need supervised learning to achieve that).

These experiments show that RC is able to create an implicit map
of the environment (while SLAM requires explicit maps to be stored)
and use it for localization purposes, both on a coordinate basis and on
a more abstract location basis (as previously showed in [2]). It works
in environments that look spatially very similar and need longer-term
memory to know the correct location, and even in complex maze-type
environments. This RC-based solution for robot localization is estab-
lished completely on a black-box approach whereas it is very easy to
train the network. In future work we plan to use the output of this
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Figure 7. Results achieved by letting the sensors to be faulty. The dashed line is the
average error using Setup 2 whereas the solid line is the error using the Setup 4 (by
predicting the broken sensors).

system as correcting input for a Kalman filter based dead reckoning
system.

5. Map learning

In the above position detection task, a RC network is used to predict
the robot position given distance sensors as input. It thus constructs an
implicit map of the environment that is used for localization. Here we
consider the reverse problem, that is, given the robot position as input,
the reservoir has to predict the expected sensory input (Figure 2(c)).
In this way, by driving the robot in the environment and recording its
position and heading sequence, the RC network can be trained for gen-
erating a map of the environment. The implicit map from the previous
section can thus be made explicit. We will similarly show that we can
also generate the maps from stream of more higher order location. The
locations are defined by the labelled triangles in Figure 6. The robot
is in a location when it is closest to the given triangle. No heading
input is provided in this case. We consider the same environments as
in the previous section (Figure 6) and the same experimental setup for
the parameters. The only difference in this section is that the inputs
to the reservoir are the (normalised) robot coordinates and heading
whereas the readout output layer (which is fed back into the reservoir)
is composed of 17 output nodes, corresponding to the distance sensors.
Additionaly, the downsampling used for the map learning experiments
is made through decimation (i.e. taking 1 sample every n timesteps) so
that corners are well represented (otherwise the map is inconsistent).
We will also look at the influence of adding color information as input.

The maps are built by moving the robot according to the pre-
recorded test data from the simulator and plotting the distance sensor
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(a) Position estimation for E4

(b) Position estimation for E5

Figure 8. Position detection by the RC network. The dashed lines represent the
target position (robot’s coordinates and heading) whereas the solid line is the output
of the RC network on test data. (a): plot for environment E4 (long T-maze) (dashed
lines not visible). (b): plot for environment E5 (complex room).

readings (or predictions) from the robot’s local coordinate system (see
Figure 9). The maps for the test data are generated by running the
RC network for 1300 and 2000 timesteps for environments E4 and E5,
respectively. For the long T-maze environment, the generated map
(Figure 9(b)) is very similar to the real map. Good performance is also
achieved for the more complex maze environment (Figure 10) consid-
ering either the robot coordinates or the locations as input (the maps
are very similar). The more abstract concept of location is represented
by a binary vector. The map generation is made by stimulating the
reservoir with the robot coordinates and heading (or locations). The
robot trajectory follows a dynamics which is probably used by the
reservoir for map generation. In order to find out how the trajectory
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(a) Original Noisy

(b) Prediction

Figure 9. Original and predicted maps for long T-maze (E4). Black points represent
the sensor readings whereas gray points are the robot position. (a): the real noisy
map as seen by the robot. (b): the map generated by the RC network (after training)
given the robot coordinates and heading as input.

dynamics is related to reservoir performance, a new experiment was
setup with environment E4 by placing four additional attractive objects
at the longest corridor. The dashed arrows in Figure 11(a) indicate
the positions of attractive objects. Gaussian noise is also added to
motor output. Thus the robot trajectory is diversified with these new
changes. The map in Figure 11(a) is built with 2800 timesteps data.
The noise version of the map used for training (Figure 11(b)) and
corresponding predictions (Figure 11(c)(d)) are constructed with 750
timesteps data. If the reservoir only considers distance sensor as input
(but no color sensor data), the irregular trajectories in the long corridor
cause the incorrect prediction in the form of displaced wall segments
(Figure 11(d)). By considering the additional color information, the
RC-based map generation is much improved and no shifted walls are
present (Figure 11(c)). Therefore, it is necessary that extra environment
information (like color sensor data) is included as input to the reservoir
in order to cope with complex trajectories in the map generation task.
Note that the process of including new data into the prediction model is
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(b) Prediction from locations

Figure 10. Real and predicted maps for complex room (E5). Black points represent
the sensor readings whereas gray points are the robot trajectory. (a): the real noisy
map. (b): the map generated by the RC network trained with the map in (a) (the
inputs to the reservoir are the robot coordinates and heading). (c) the generated
map with the more abstract locations as input.

straightforward, requiring just the addition of more inputs (the model
is automatically adjusted by a general reservoir and a general learning
algorithm).

6. Path generation

We have shown that we can use RC networks for both position detection
and map generation with the same reservoir configuration. This section
presents an interesting setting where the same reservoir can be used
for both aforementioned tasks simultaneously (Figure 2(d)). Now the
reservoir only has outputs which are fed back to the reservoir by either
teacher-forcing or using it in the free-run mode (i.e., the real network
output is fed back). The output nodes are the robot position as well as
the robot sensor readings. If we want to predict the robot sensors, we
can teacher-force the robot position. Accordingly, we can teacher-force
the sensor readings for position estimation.
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(a) Original (no noise)

(b) Original (with noise)

(c) Map generation (color data as input)

(d) Map generation (no color data)

Figure 11. Map generation from more irregular robot trajectories for the long T–
maze (E5). (a): the original map. The dashed arrows show the position of attractive
objects. (b): the map used for training (noise added from N(0, 9)). (c): the map
generated considering robot coordinates, heading and color sensors as input to the
reservoir. (d): the map generated excluding color sensor data.
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The RC network is configured in the following way for the experi-
ments in this section. The readout layer has 20 output nodes (17 for
distance sensors plus 3 for normalised robot coordinates and head-
ing). The reservoir is made of 700 neurons, with a spectral radius
|λmax| = 0.9. The values in the weight connection matrix from output
to reservoir are initialized to -0.5, 0.5, and 0 with probabilities 0.2, 0.2,
and 0.6, respectively. The noise in the state update equation is 0.0001.

Consider environment E4 (the long T-maze). The robot navigates
continuously through this environment and its sensors and position are
recorded. The resulting dataset (the same as previous section) contains
3600 timesteps after resampling. The RC network is trained with the
first 2400 timesteps. Then, we set the initial state of the reservoir to the
state it was at timestep 2400 during training. After that, the reservoir
runs in free-mode, where every actual output is fedback to the reservoir
(this can be thought as follows: the robot runs for 2400 timesteps and
then it dreams of its trajectory and its environment in the following
timesteps). As the output is not teacher-forced, the reservoir is free to
develop its own dynamics. The results are shown in Figure 12. The
first plot shows the predicted robot position whereas the second one
corresponds to the generated map. As it can be seen, the predicted
robot trajectory follows a cyclic dynamics as if the robot was capturing
each target in a predefined sequence. Probably this sequence is the
most relevant in the training dataset. The generated map shows that
the long corridor is well rebuilt while the corners are more difficult to
reconstruct due to the fast turning robot behavior at these locations.

This work demonstrates that a single RC system is able to both
model the robot’s controller and environment as well as to generate
trajectories and environments in a free-run fashion. These capabilities
are processed by a single recurrent neural network without any rule-
based mechanism or higher-order technique. On the other hand, this
neural network model could be used by some more abstract decision-
based system, for instance: for making future predictions on the robot’s
path and environment if a certain behaviour is chosen from some point
on (in this case a behavior module would be input to a RC network).
Although the term might seem quite colloquial this can be understood
as if the robot was dreaming about its environment and its associated
reactive behaviour. Furthermore, this can be achieved with a system
that is biologically plausible [21] which is an evidence that even very
simple animals could make short-term predictions of their actions in
their environment.
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(a) Predicted robot path

(b) Generated map

Figure 12. Path generation in free-run mode. The RC network predicts both robot
position and the sensor readings (there is no teacher forcing during prediction). (a):
the predicted robot path. (b): the corresponding generated map (black points are
the sensor readings and gray is the predicted robot trajectory).

7. Conclusions

The Reservoir Computing (RC) approach is a new concept for efficient
and easy training of Recurrent Neural Networks (RNNs). With RC, the
states of a random dynamical system made of a fixed RNN are mapped
onto the readout output layer. Only this readout layer is trained with
standard linear regression techniques, that is, training consists of com-
puting the transpose of matrices and matrix inversion operations. RC
is a real alternative to previous techniques such as Backpropagation
Through Time (BPTT) which shows slow convergence and very difficult
training for RNNs.

In this work we have shown that RC can be used to model and
predict several aspects of autonomous mobile robots. First, we used
RC for training robot controllers to solve the T-maze task, which re-
quires long-term memory in order to establish the association between
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a stimulus in the past and the correct action at a specific point in the
future. Next RC was used for enabling efficient and robust robot lo-
calization even when some distance sensors are faulty. The localization
was possible with few (17) sensors as opposed to SLAM which usually
requires expensive laser range scanners. The following applications of
RC were in map and path generation, where a reservoir was used in
a generative setting for making explicit the map stored internally by
the RC network. All of these applications are based on implicit models
(no explicit representation of the environment is used). In addition,
the use of output feedback connections in RC improves the estimation
of positions (in the localization task) and sensory inputs (in the map
generation task), while in the path generation task it enables long-term
future predictions of both the environment and the associated robot’s
reactive behavior.

RC has biological foundations as it is shown, for example, that
Liquid State Machines (a type of RC) are based on the micro-column
structure in the cortex [12]. Furthermore, the works in [14, 21] establish
a strong association between real brains and reservoirs, what is an
appealing motivation towards the use of RC for intelligent autonomous
systems.

As future work we plan to validate the above experiments in a real-
world robotic setup. Additionaly, one of the most relevant points to be
investigated relies on the storage capacity of RC-based systems. The
following question is pertinent: How large can the environments be so
that they can still be modeled? Current research indicates that the stor-
age capacity could be increased by elaborating hierarchical reservoirs.
Thus, specific parts of the environment would be stored by distinct
reservoirs.

In this work the tranining of RC networks has been done off-line
and in a supervised way. An interesting future direction for research is
the elaboration of a system which can generate and learn new locations
in an unsupervised way and as such autonomously construct place cell
representations.
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12. W. Maass, T. Natschläger, and H. Markram. Real-time computing without
stable states: A new framework for neural computation based on perturbations.
Neural Computation, 14(11):2531–2560, 2002.

13. S. Najand, Z. Lo, and B. Bavarian. Applications of self-organizing neural
networks for mobile robot environment learning. In G. A. Bekey and K. Y.
Goldberg, editors, Neural networks in robotics, pages 85–96. Kluwer Academic
Publishers, 1992.

14. D. Nikolić, S. Häusler, W. Singer, and W. Maass. Temporal dynamics of infor-
mation content carried by neurons in the primary visual cortex. In Advances
in Neural Information Processing Systems 19, volume 19, 2007. in press.

15. R. M. Rylatt and C. A. Czarnecki. Embedding connectionist autonomous
agents in time: The ’road sign problem’. Neural Processing Letters, 12:145–158,
2000.

npl.tex; 25/01/2008; 11:29; p.21



22 E. A. Antonelo

16. B. Schrauwen, M. D’Haene, D. Verstraeten, and J. Van Campenhout. Compact
hardware for real-time speech recognition using a liquid state machine. In
Proceedings of the IJCNN, 2007. submitted.

17. B. Schrauwen, D. Verstraeten, and J. Van Campenhout. An overview of reser-
voir computing: theory, applications and implementations. In Proceedings of
the European Symposium on Artifical Neural Networks (ESANN), 2007.

18. J. J. Steil. Backpropagation-Decorrelation: Online recurrent learning with
O(N) complexity. In Proceedings of IJCNN ’04, volume 1, pages 843–848,
2004.

19. S. Thrun. Learning maps for indoor mobile robot navigation. Artificial
Intelligence, 99:21–71, 1998.

20. D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. A unifying
comparison of reservoir computing methods. Neural Networks, 20:391–403,
2007.

21. T. Yamazaki and S. Tanaka. The cerebellum as a liquid state machine. Neural
Networks, 20:290–297, 2007.

Address for Offprints: Electronics and Information Systems (ELIS) department
Ghent University Sint Pietersnieuwstraat 41 9000 Ghent Belgium

npl.tex; 25/01/2008; 11:29; p.22


