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Abstract— In this work we tackle the road sign problem
with Reservoir Computing (RC) networks. The T-maze task
(a particular form of the road sign problem) consists of a robot
in a T-shaped environment that must reach the correct goal (left
or right arm of the T-maze) depending on a previously received
input sign. It is a control task in which the delay period between
the sign received and the required response (e.g., turn right or
left) is a crucial factor. Delayed response tasks like this one
form a temporal problem that can be handled very well by
RC networks. Reservoir Computing is a biologically plausible
technique which overcomes the problems of previous algorithms
such as Backpropagation Through Time - which exhibits slow
(or non-) convergence on training. RC is a new concept that
includes a fast and efficient training algorithm. We show that
this simple approach can solve the T-maze task efficiently.

I. INTRODUCTION

An increasing number of research groups have raised their
attention to the fields of intelligent autonomous systems
and learning robots. These systems are usually designed
by computational intelligence techniques which provide a
rich ground for achieving learning capabilities as well as
robustness to noise and environment changes. The biolog-
ical foundation of these techniques comes from several
areas and includes: computational models of the brain [8],
evolutionary-based systems [12], swarm intelligence tech-
niques [5] and reinforcement learning systems [4].

The road sign problem, which is tackled in this work,
constitutes a particular temporal task which is defined in
[24]. In this problem, an artificial agent (robot) which is
driving along a corridor receives a temporal sign that must
be remembered for future correct decision making. The T-
maze task is the most common form of such problem: the
robot drives along an environment whose shape resembles
the letter T (see Fig. 3). The robot’s task is to drive from the
initial position located at the bottom of the longest corridor,
reach the T-junction and then turn to the correct goal (left or
right). The correct turning decision at the T-junction depends
on the previous input sign received while driving along the
corridor (usually a sign at the left/right side of the corridor
indicates that the goal is at the left/right arm of the T-maze).

Several systems designed to solve such task represent
the robot’s environment as a discrete world [4] in order to
make the task easier to be solved. Sometimes the world’s
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representation is not discrete, but instead the models are
designed with event extraction mechanisms which work on
the robot sensory cues in order to provide abstract signals to
the control module [14]. Recent work has tackled the road
sign problem with a continuous world representation [18],
[26], [12]. Most approaches to the road sign problem are
based on recurrent neural networks [24], [18], [26]. The work
in [26] is based on neuromodulation of synaptic weights in
higher-order Recurrent Neural Networks (RNNs) to solve the
T-maze task. This means that the sensory-motor mapping
(synapses) can be modified while the robot is navigating as a
mechanism of short-term memory. This synaptic plasticity is
evolved by a standard genetic algorithm. However, for simple
T-mazes the resulting controller became purely reactive and
followed the left wall as soon as the light sign appeared at the
left (in contrast to the current work which does not yield wall
following behaviors). In [12], evolutionary multi-objective
optimization is used to evolve finite state controllers for the
T-maze task, whose control task is simplified by forcing the
robot to first reach the T-junction. In that work, a detailed
analysis of the required internal memory for the T-maze task
is accomplished. Reinforcement learning with Long Short-
Term Memory (LSTM) is the approach used in [4] to solve
non-Markovian tasks with long-term dependencies between
relevant events (such as the T-maze task). A specific RNN
architecture is used to approximate the value function of a
reinforcement learning algorithm. The environment of the
agent is discrete (made up of connected squares) and it can
execute one out of 4 actions: move North, East, South or
West.

New computational models of the brain have been pro-
posed in the literature [16], [8] under the name of Liquid
State Machines (LSMs). This technique uses a reservoir
of spiking neurons that has fixed random weights and is
sparsely connected. The reservoir is a RNN which produces
rich dynamics of temporal nature (because of the recurrent
connections in the reservoir). The states of the reservoir are
mapped onto a readout output layer (see Fig. 1). The training
is only accomplished for the connection weights in the read-
out output layer with standard linear regression techniques.
The engineering counterpart of the LSM is the Echo State
Network (ESN) , which was created independently by [11].
In [25], both LSM and ESN (as well as BackPropagation
DeCorrelation [22]) are compared and termed jointly as
Reservoir Computing (RC) because of their great similarities.

Reservoir Computing has been applied successfully in
several applications, such as: mobile robot control [19],
[6], robot localization and event detection [2], time series



Fig. 1. Reservoir Computing network. The reservoir is a dynamical system
of recurrent nodes. Solid lines represent connections which are fixed. Dashed
lines are the connections which can be trained.

prediction [13], generation of music sequences [7] and learn-
ing grammatical structures [23]. There are also promising
applications of ESNs in the domains of system identification
or as low-level plant controllers [10].

This work uses Reservoir Computing as an efficient tool
for training robot controllers to solve the T-maze task. The
main advantages of our approach are threefold: simplicity of
the approach; efficient and fast training of controllers; and
integration of reactive and sequential behavior in a single
control module. The first point is related to the easing of the
design task by just employing the RC networks to perform
the T-maze task by imitation learning (i.e., it is a black-box
approach with high performance which facilitates a complex
design task). The next point corresponds to the efficient and
fast training of ESNs by standard linear regression methods
[25] which is superior to previous methods and avoids
convergence related problems like Backpropagation Through
Time. Finally, there is no separation between reactive and
sequential (deliberative) behavior (i.e., there is only one
control module), which forces the RC network to learn the
whole task by imitation learning. In this way, the robot has
to learn to move in its environment (reactive part) but it also
should learn the sequential task of reaching the T-junction
and turn to the correct goal depending on the previous cue
received (deliberative part).

The next section presents the Reservoir Computing ap-
proach used for this work as well as the autonomous robot
simulator and robot model. The accomplished experiments
and associated results are presented in Section III. Finally,
the last section summarizes and concludes this work.

II. METHODS

A. Reservoir Computing

The current work uses the Echo State Network approach
as a learning system for the road sign problem. The random,
recurrent neural network (or reservoir) is composed of sig-
moidal neurons and is modeled by the following state update
equation:

x(t + 1) = f(Winu(t) + Wx(t)), (1)

where: Win is the connection matrix from input to reser-
voir; W is the weight matrix for the recurrent connections

between internal nodes;f is the hyperbolic tangent function;
and u(t) is the input vector at timet. The initial state is
x(0) = 0.

The outputy(t) of the network at timet is given by

y(t) = Wout

[

x(t)
1

]

, (2)

whereWout is the readout matrix.
The readout matrixWout is created by solving (in the

mean square sense) the following equation:

MWout = Ŷ, (3)

whereM is the matrix containing the internal statesx(n)
for n = 1, 2, . . . , ns (which are collected after stimulating
the network with input data);̂Y contains the corresponding
teacher outputs;ns denotes the total number of time samples.

We use the Reservoir Computing Toolbox (RCT Toolbox1

[25]) for training robot controllers in a Matlab environment.

B. Autonomous Robot Simulator

The simulation of the road sign problem in the form
of a T-maze task is accomplished using a sophisticated
autonomous robot simulator developed in C++ [1]. The
environment of the robot is composed of several objects,
each one of a particular color. Obstacles are represented by
blue objects whereas the light sign in the T-maze is simulated
by a red object. The robot model is shown in Fig. 2. The
robot interacts with the environment by distance and color
sensors; and by two actuators which control the movement
direction (turning) and speed. Sensor positions are distributed
uniformly over the front of the robot (from -90◦ to +90◦).
Each position holds two virtual sensors (for distance and
color perception) [1]. The following experiments consider
that the robot model has either 3 or 7 sensor positions (see
Fig. 2). The distance sensors are limited in range (i.e., they
saturate for distances greater than 300 distance units (d.u.))
and are noisy (they exhibit Gaussian noise on their readings).
A value of 0 means near some object and a value of 1 means
far or nothing detected. The color sensor is calculated as the
normalization of the component Hue of the Hue-Saturation-
Value (HSV) color system. At each iteration the robot is able
to execute a direction adjustment to the left or to the right
in the range [0, 15] degrees and the speed is limited to [0,
17] distance units (d.u.).

III. EXPERIMENTS

A. Introduction

In this work, we use the Reservoir Computing (RC)
paradigm to enable a simulated mobile robot to solve the
T-maze task. The environments used for the experiments are
shown in Fig. 3. The task of the robot is to drive from the
initial position until the T-junction and then turn left/right
if the sign previously appeared at the left/right side of the
longest corridor. Environment B has a longer corridor (2x)

1This is an open-source Matlab toolbox for Reservoir Computing which
is freely available at http://www.elis.ugent.be/rct



Fig. 2. Robot model.

than in environment A. This will enable us to see how the
task is solved when a longer delay between the cue (light
sign) and the subsequent response (turning) is required.

The experiments are divided in three stages: acquisition of
the training dataset; training the RC-based robot controller;
and testing of the resulting robot controllers. These three
steps are executed for each environment (i.e., a controller
trained with data from environment A is only tested in the
same environment). The first stage consists of using the robot
simulator to generate a dataset with samples of the robot’s
sensory inputs and actuators by driving the robot through the
T-maze with a simple set of rules (e.g., go from the initial
position until the T-junction, then turn left if the sign was
at the left side). The dashed line in Fig. 4 represents an
example of a correct trajectory generated by such algorithm.
We collect around 50 examples for the training dataset which
considers random robot starting positions (in the range [-
10,10] d.u. for X and Y coordinates) and robot heading (in
the range [-15,15] degrees). After data acquisition, the second
stage consists of performing imitation learning with the RC
network by using the previous collected examples to train the
controller, characterizing a generalization process. TheRC
network is trained to output the desired turning and speed
values for solving the robot task (in the Matlab environment).
The last stage is the performance testing of the RC-based
controller in the T-maze task, which is based on the real-time
communication between the Matlab process and the robot
simulator (implemented by TCP/IP sockets). The previous
work [3] only considered off-line testing on pre-recorded
sensory inputs from the simulator (not real-time).

The average number of timesteps for the realization of the
T-maze task by the algorithm which generates the training
dataset is 26.3 timesteps for environment A (standard devia-
tion of 1.6) and 34.9 timesteps for environment B (standard
deviation of 1.5). In the testing stage, the T-maze task has to
be accomplished in 38 and 46 timesteps for environments A
and B, respectively (this was arbitrarily set). These values do
not include the first 20 timesteps in which the robot stays still
in the data acquisition stage as well as in the testing phase.
During these first timesteps, the reservoir starts at the initial
statex(t) = 0 and follows an undesired transient response
to the input. The reservoir reaches a steady state after some
transient interval. So the training of the readout output layer

Fig. 3. Environments used for the experiments. The robot onlysees1 sign
at a time. A sign at the left (right) indicates that the goal is at the left arm,
in G1 (right arm, in G2).

discards the first 20 timesteps of the data which are used only
for initializing the state of the reservoir (this is called warm-
up drop in the literature). At each timestep, Gaussian noiseis
added to the robot’s actuators from the distributions N(0,2)
for the robot turning (in degrees) and from N(0,0.5) for the
robot speed (in d.u.). This noise on actuators is considered
in the data acquisition stage as well as in the testing stage.

The reservoir configuration is as follows for all experi-
ments in this work. The inputs to the network are distance
and color sensors totalling either 6 inputs (if the robot
model has 3 distance sensors and 3 color sensors) or 14
inputs (if the robot model has 7 distance sensors and 7
color sensors) which can range from 0 to 1. The reservoir
is composed of 500 sigmoidal nodes, scaled to a spectral
radius2 of |λmax| = 0.9 [9], which approximately sets the
reservoir at the edge of stability (sometimes referred to asthe
edge of chaos). The readout layer has 2 output units which
correspond to the robot actuators (i.e., robot turning and
speed). The connection matrix from input to the reservoir is
initialized at the values -0.1, 0.1 and 0 with probabilities0.1,
0.1 and 0.8, respectively. This parameter setting for weight
matrices are not critical for the tasks in this work.

The robot sensors on the training datasets are 5% noisy
(Gaussian noise fromN(0, 0.05) which means effectively
N(0, 15) in distance units) and on color sensors (Gaussian
noise fromN(0, 0.05)) ([18] only considers noise-free data
for a particular version of the road sign problem solved with
Elman networks). The performance tests consider either 1%
or 5% Gaussian noise on the robot sensors (this will be stated
accordingly in the text).

B. Results

In this section, we will investigate how the number of
sensors in the robot model and the noise level on the
sensor readings affect the performance of the RC-based
controller on the T-maze task. This analysis is made for both
environments A and B.

An example of the robot’s trajectory in the T-maze of
environment A is shown on Fig. 4(a). The solid line which

2The spectral radiousλmax is the eigenvalue of the matrixW with the
largest absolute value.
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Fig. 4. Plots for the robot trajectory (a), robot sensors (b)and actuators (c) when the sign appears at the left side of thecorridor in the T-maze of
environment A. The desired path takes 26 timesteps whereas thecontrolled robot path takes 38 timesteps. The robot model has 7distance sensors and
7 color sensors which are 1% noisy. (a) The solid line is the real robot trajectory driven by the RC network. The dashed lineis an example of desired
trajectory. (b) The 14 inputs to the network (i.e., 7 distance sensors and 7 color sensors readings) in the testing stage for 30 timesteps. (c) The robot’s
actuators given by the RC network (solid line; for 30 timesteps) and given by the desired path (dashed line; for 26 timesteps).

connects the robot positions at each timestep represents the
real trajectory of the robot (driven by the output of the
RC network) whereas the dashed line which connects small
boxes represents an example of a desired trajectory. The
corresponding sensory inputs and robot actuators are given
in Fig. 4(b) and Fig. 4(c), respectively.

Fig. 4 shows that the control task is smoothly performed
by a single control module (i.e., the RC network). In that
example, the trajectory shows that both reactive and sequen-
tial behaviors are achieved with our simple approach. After
training, the RC network can drive the robot exclusively
based on sensor data and can hold the past information for
posterior decision making. The recurrent pathways in the
reservoir yield a fading memory which is crucial for solving
the T-maze task. Traditional feedforward neural networks are
not capable of this [18]. Furthermore, we can see that it
takes at least 5 timesteps between the last perception of the
sign in the corridor (timestep 9) and the start of the turning
movement (timestep 14) for this short environment.

The robot trajectory given by the trained RC network in
the T-maze of environment B is shown in Fig. 5. We can
observe that the time gap between the cue received in the
corridor and the decision making at the T-junction can be
even greater (18 timesteps) while the task is still solved
correctly.

In order to know the repeatability of the performance of
the experiments, we generate statistics for environments A
and B, for different noise levels on sensor readings (1% or
5%), and for distinct robot models (with 3 or 7 sensors).
The summarized results for each combination are presented
on Tables I and II. The results are calculated after executing
the experiment for 10 different reservoirs, each one being
evaluated 30 times. So, each combination results from 300
runs on the T-maze (150 runs for each goal). The numbers
in the tables show the percentage of examples (trajectories)
that are classified as successful for solving the T-maze task.
We consider that the run was successful if the robot reached
the inner part of the correct arm at the final timestep. For
instance, the run on Fig. 5 was successful because the last

point of the trajectory has an abscissa which is lower than
the abscissa (300) of the left side of the main corridor (so
the left and right sides of the corridor are delimiters).

The tables show that a robot model with 7 sensors provides
important additional information for solving the T-maze task
appropriately when compared to a robot model of 3 sensors.
The model with 7 sensors increases performance over the
model with 3 sensors by 37% for environment A and by
45% for environment B (figures for the left goal - see
Table I). It is also possible to observe that the effect of
increasing the noise level on the sensor readings mainly
affects the experiments on environment B, specially the ones
considering the robot model with 7 sensors. In this case, the
degradation in performance is up to 13%. We conclude that
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Fig. 5. Plot for robot trajectory driven by RC network in environment
B. Circles represent the moment in which the robot loses the sight of the
sign and the starting time of the turning at the T-junction. This time gap
corresponds to 18 timesteps. The robot model has 7 distance sensors and 7
color sensors which are 1% noisy.



TABLE I

PERCENTAGE OF CORRECT TRAJECTORIES FOR1% NOISE ON SENSORS

3 sensors 7 sensors

Left Right Left Right

Environment A 58% 62% 95% 93%
Environment B 37% 33% 82% 81%

TABLE II

PERCENTAGE OF CORRECT TRAJECTORIES FOR5% NOISE ON SENSORS

3 sensors 7 sensors

Left Right Left Right

Environment A 67% 70% 93% 87%
Environment B 28% 26% 69% 69%

the experiments in a longer T-maze (environment B) take
more advantage of the addition of extra information in the
form of more sensors in the robot model. Furthermore, higher
noise levels negatively influence difficult T-maze tasks (the
difficulty is directly related to the size of the main corridor,
i.e., the time gap between cue and required response).

Part of the statistics summarized in the aforementioned
tables is available visually in Fig. 6 and Fig. 7. These figures
show the coordinates of the robot in its environment at the
final timestep of each run. The robot model with 7 sensors
and a noise level of 1% are considered here. Observe that
we only look at the final position of the robot, while it can
sometimes still collide against a wall during the intermediate
steps (a collision will cause a step back and a small change
on the direction of movement). There are 300 points for each
figure which represent distinct runs through the respective
T-maze. A circle/asterisk means that the sign appeared in
the right/left side of the corridor for the corresponding run.
We can note that circles are concentrated on the right arm
whereas asterisks are located mainly on the left arm, as
expected.

IV. CONCLUSION AND FUTURE WORK

In this work we presented a simple approach to the
road sign problem by employing Reservoir Computing (RC)
networks in the modeling of the robot controller. RC is
a simple technique which provides easy and fast training
of recurrent neural networks. The reservoir is a dynamical
system whose states are mapped in the readout output layer.
This mapping is learned through standard linear regression
techniques, which makes this technique very powerful, avoid-
ing the convergence problems of previous algorithms like
Backpropagation Through Time as well as the need to unfold
the network in time as in [18]. The technique is biologically
plausible [8], what is in line with the most recent advances
in intelligent autonomous systems which seek models with
more and more biological foundations.

The road sign problem is a type of delayed response task,
where relevant input information gathered in the past (e.g.,
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Fig. 6. Distribution of ending points in environment A. Each point
represents the final robot position after 38 timesteps in which the RC
network drives the robot. There are 300 points (generated by10 different
reservoirs which run 30 examples each). Asterisks and circles represent left
and right goals for the current task, respectively.
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Fig. 7. Distribution of ending points in environment B. Each point
represents the final robot position after 46 timesteps in which the RC
network drives the robot. There are 300 points (generated by10 different
reservoirs which run 30 examples each). Asterisks and circles represent left
and right goals for the current task, respectively.

the light sign) determines adequate output decisions (e.g.,
turn right or left) after some delay period. The T-maze task
is the most common form of the road sign problem and is
tackled in this work. The difficulty of this task relies on
the time gap which exists between the cue/sign received
and the appropriate required response. Only a single control
module is used for solving this task so that reactive and se-
quential behaviors are integrated and learned simultaneously.
Furthermore, we show that the control task is accomplished
successfully with time gaps of up to 18 timesteps between
the cue and the response.

This work is a significant extension of previous exper-
iments developed in [3]. In the current paper, the testing
of robot controllers is done in real-time in contrast to the
offline testing on pre-recorded sensory inputs in [3]. Other



differences for the current work include: the speed is not
constant and is controlled by the RC network, the sensor data
are not resampled and the robot model has a limited number
of sensors. We generate statistics for the experiments in this
work, making it possible to draw reliable conclusions.

Further study on longer T-maze environments which re-
quire longer delay periods for the postponed response is left
as future work. In this case, the design of an unsupervised
method for adapting the timescale of the reservoir to the
input flow may be an interesting approach that would work
for arbitrary delay periods. For instance, by lowering the
timescale of the reservoir when the input is slowly varying
(when the robot drives in a straight line along the main
corridor) and increasing this timescale back otherwise, the
performance can greatly be enhanced for long delay periods
because the memory of the reservoir is increased with this
new scheme[15]. These ideas of working with the timescale
of reservoirs can find applications in other areas such as
speech recognition [20], [21]. We also plan to validate the
current work on a real robotic setup using the mobile robot
e-puck [17].
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