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Abstract—In this work we tackle the road sign problem
with Reservoir Computing (RC) networks. The T-maze task
(a particular form of the road sign problem) consists of a robot
in a T-shaped environment that must reach the correct goal (left
or right arm of the T-maze) depending on a previously received
input sign. It is a control task in which the delay period between
the sign received and the required response (e.g., turn right or
left) is a crucial factor. Delayed response tasks like this one
form a temporal problem that can be handled very well by
RC networks. Reservoir Computing is a biologically plausible
technique which overcomes the problems of previous algorithms
such as Backpropagation Through Time - which exhibits slow
(or non-) convergence on training. RC is a new concept that
includes a fast and efficient training algorithm. We show that

representation is not discrete, but instead the models are
designed with event extraction mechanisms which work on
the robot sensory cues in order to provide abstract sigoals t
the control module [14]. Recent work has tackled the road
sign problem with a continuous world representation [18],
[26], [12]. Most approaches to the road sign problem are
based on recurrent neural networks [24], [18], [26]. Thekwvor
in [26] is based on neuromodulation of synaptic weights in
higher-order Recurrent Neural Networks (RNNs) to solve the
T-maze task. This means that the sensory-motor mapping
(synapses) can be modified while the robot is navigating as a
mechanism of short-term memory. This synaptic plastiaty i

this simple approach can solve the T-maze task efficiently. evolved by a standard genetic algorithm. However, for sémpl

T-mazes the resulting controller became purely reactivke an
. INTRODUCTION followed the left wall as soon as the light sign appearedeat th
An increasing number of research groups have raised thédft (in contrast to the current work which does not yield lwal
attention to the fields of intelligent autonomous systemfbllowing behaviors). In [12], evolutionary multi-objeee
and learning robots. These systems are usually designggtimization is used to evolve finite state controllers toe t
by computational intelligence techniques which provide d-maze task, whose control task is simplified by forcing the
rich ground for achieving learning capabilities as well asobot to first reach the T-junction. In that work, a detailed
robustness to noise and environment changes. The biolagnalysis of the required internal memory for the T-maze task
ical foundation of these techniques comes from severfd accomplished. Reinforcement learning with Long Short-
areas and includes: computational models of the brain [8ferm Memory (LSTM) is the approach used in [4] to solve
evolutionary-based systems [12], swarm intelligence -tecthon-Markovian tasks with long-term dependencies between
niques [5] and reinforcement learning systems [4]. relevant events (such as the T-maze task). A specific RNN
The road sign problem, which is tackled in this work.architecture is used to approximate the value function of a
constitutes a particular temporal task which is defined ireinforcement learning algorithm. The environment of the
[24]. In this problem, an artificial agent (robot) which isagent is discrete (made up of connected squares) and it can
driving along a corridor receives a temporal sign that musixecute one out of 4 actions: move North, East, South or
be remembered for future correct decision making. The TAest.
maze task is the most common form of such problem: the New computational models of the brain have been pro-
robot drives along an environment whose shape resemblgssed in the literature [16], [8] under the name of Liquid
the letter T (see Fig. 3). The robot’s task is to drive from thetate Machines (LSMs). This technique uses a reservoir
initial position located at the bottom of the longest caorid of spiking neurons that has fixed random weights and is
reach the T-junction and then turn to the correct goal (Ieft asparsely connected. The reservoir is a RNN which produces
right). The correct turning decision at the T-junction deg® rich dynamics of temporal nature (because of the recurrent
on the previous input sign received while driving along theonnections in the reservoir). The states of the reserveir a
corridor (usually a sign at the left/right side of the coatid mapped onto a readout output layer (see Fig. 1). The training
indicates that the goal is at the left/right arm of the T-m)azeis only accomplished for the connection weights in the read-
Several systems designed to solve such task represent output layer with standard linear regression techrique
the robot’'s environment as a discrete world [4] in order tdhe engineering counterpart of the LSM is the Echo State
make the task easier to be solved. Sometimes the worldetwork (ESN) , which was created independently by [11].
In [25], both LSM and ESN (as well as BackPropagation
DeCorrelation [22]) are compared and termed jointly as
Reservoir Computing (RC) because of their great simiksiti
Reservoir Computing has been applied successfully in
several applications, such as: mobile robot control [19],
[6], robot localization and event detection [2], time serie
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between internal nodeg;is the hyperbolic tangent function;

\\‘—J V and u(t) is the input vector at time¢. The initial state is
oZ 30 x(0) = 0.
O< i O The outputy(t) of the network at time is given by
- N x(t
.l Pl y(t):Wout|: (1):|; (2)
ol 30
""" > e where W, is the readout matrix.
inputs outputs The readout matrixW,; is greated by solving (in the
. mean square sense) the following equation:
reservoir
Fig. 1. Reservoir Computing network. The reservoir is a dycahsystem MW, = Y, 3
of recurrent nodes. Solid lines represent connectionstwanie fixed. Dashed
lines are the connections which can be trained. whereM is the matrix containing the internal stategn)

forn = 1,2,...,ns (which are collected after stimulating
the network with input data)y contains the corresponding
teacher outputs); denotes the total number of time samples.
g We use the Reservoir Computing Toolbox (RCT ToolBox
[125]) for training robot controllers in a Matlab environnien

prediction [13], generation of music sequences [7] anchlear
ing grammatical structures [23]. There are also promisin
applications of ESNs in the domains of system identificatio
or as low-level plant controllers [10].
This work uses Reservoir Computing as an efficient to@®. Autonomous Robot Simulator

for training robot controllers to solve the T-maze task. The The simulation of the road sign problem in the form
main advantages of our approach are threefold: simplidity ®f a T-maze task is accomplished using a sophisticated
the approach; efficient and fast training of controllersg an, tonomous robot simulator developed in C++ [1]. The

integration of reactive_z and _se_quential behavior in_ a singlg, ironment of the robot is composed of several objects,
control module. The first point is related to the easing of thg_ ., 1he of a particular color. Obstacles are represented by

design task by just _em_plqying the- RC .netvyolrks to Ioerfornr3lue objects whereas the light sign in the T-maze is simdlate
the T-maze task by imitation learning (i.e., it is a blackbo by a red object. The robot model is shown in Fig. 2. The

approach with high performance which facilitates a comple bot interacts with the environment by distance and color

?e5|gn_tqsk). :'rllzesaexltjpomt c(:jorrdeslponds to the _eﬁ'c'entha%?rnsors; and by two actuators which control the movement
ast training o s by standard linear regression metnogg o o (turning) and speed. Sensor positions are Higtd

[25] which is superior to previous methods and a\’Oid?:miformly over the front of the robot (from -90to +90C).
convergence related .problems Iike_Backpropagation Tmou%ach position holds two virtual sensors (for distance and
Time. F!nally, there IS o separatlorj between reactlve ar1’.‘1)I0r perception) [1]. The following experiments consider
sequential (dellbera.'uve) behavior (i.e., there is onlye ONihat the robot model has either 3 or 7 sensor positions (see
control module_), Wh'.Ch force_s the RC_ network to learn th‘?:ig. 2). The distance sensors are limited in range (i.ey, the
whole task by |m_|ta_t|on Ie_armng. In this way, the robqt hassaturate for distances greater than 300 distance unit9)(d.u
to learn to move in its environment (reactive part) but ibals and are noisy (they exhibit Gaussian noise on their reajlings
should learn the sequential task of .reaching the T—.junctioR value of 0 means near some object and a value of 1 means
and .turn to the correct goal depending on the previous CY&r or nothing detected. The color sensor is calculated @s th
received (dellber_anve part). . . normalization of the component Hue of the Hue-Saturation-
The next sectlon presents the Reservoir Computing ARalue (HSV) color system. At each iteration the robot is able
proach used for this work as well as the autonomous robel o, o6 3 direction adjustment to the left or to the right

simulator and robot model. The accomplished experimen the range [0, 15] degrees and the speed is limited to [0
and associated results are presented in Section Ill. Fjnal 7] distance un,its (d.u.) '

the last section summarizes and concludes this work.

II. METHODS _
A. Reservoir Computing A. Introduction

The current work uses the Echo State Network approachlndt.h's \t/vork, \l:,)\ie use thIetF;eser\ég)l|r anlp:mngl (R(t:g
as a learning system for the road sign problem. The rando ?ra 'gT E ?I%a € asimu ate mg fl etLo ot 0 S0 vet N
recurrent neural network (or reservoir) is composed of SigF_-maze ask. The environments used for the experiments are

moidal neurons and is modeled by the following state upda own in _F_'g' s. The taSk. of the robot is to drive fro”? the
equation: Initial position until the T-junction and then turn lefgtt

if the sign previously appeared at the left/right side of the
x(t+1) = f(Wiuu(t) + Wx(t)), (1) longest corridor. Environment B has a longer corridor (2x)

I1l. EXPERIMENTS

Where: Win IS thel ConneCt!on matrix from Input to reger- 1This is an open-source Matlab toolbox for Reservoir Computimich
voir; W is the weight matrix for the recurrent connectionss freely available at http:/iwww.elis.ugent.be/rct
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Fig. 2. Robot model.
Fig. 3. Environments used for the experiments. The robot seésl sign
at a time. A sign at the left (right) indicates that the goaltishe left arm,
in G1 (right arm, in G2).
than in environment A. This will enable us to see how the

task is solved when a longer delay between the cue (light ] ) _

The experiments are divided in three stages: acquisition I)cfr initializing the state of the reservoir (this is calledwm-

the training dataset; training the RC-based robot comtroll up drop in the literature). At each timestep,. Ggus;ian risise
and testing of the resulting robot controllers. These thre dded to the robot's actuators from the distributions N(0,2

steps are executed for each environment (i.e., a controller. the robot turning (in degrees) and from N(0,0.5) for the

trained with data from environment A is only tested in therObOt speed (in d.u.). This noise on actuators is considered

same environment). The first stage consists of using thea rodd _trf;]e data aC‘?“'S'“OfT‘ sta?_e as well :LTI n th? tesltlmg stage.
simulator to generate a dataset with samples of the robot’s te 'restﬁ'rvow C; nTlgurg |or1 ISt atsh 0 O\tNS Er a dexﬁ)erl-
sensory inputs and actuators by driving the robot through gfnents In this work.-The Inputs to the network are distance

T-maze with a simple set of rules (e.g., go from the initiafind color sensors totalling either 6 inputs (if the robot

position until the T-junction, then turn left if the sign Was.mOdel has 3 distance sensors and 3 color sensors) or 14

at the left side). The dashed line in Fig. 4 represents a{Hﬁ)UtS (if the rotr)]c_)thmodel has Z d|st(<)51r;celst::‘rrr1]sors and .7
example of a correct trajectory generated by such algorithrﬁo or sensors) which can range from 0 to 1. The reservoir

We collect around 50 examples for the training dataset whidR composed of 500 sigmoidal nodes, scaled to a spectral

considers random robot starting positions (in the range adius 9f |t>\tﬁm|d: 0'9f [?]’b}?_'th'Ch apptrommat:zly sgt;nthe
10,10] d.u. for X and Y coordinates) and robot heading (i eservoir at the edge of stability (sometimes referre as

the range [-15,15] degrees). After data acquisition, ticerse edge of chaos). The readout layer hgs 2 output uniFs which
stage consists of performing imitation learning with the RC’correspond to the rgbot actyators .("e" robot turning .ar.1d
network by using the previous collected examples to tragn thSp.e.e(.j)' The connection matrix from mpqt to the reservoiris
controller, characterizing a generalization process. Rl |n|;|allz§doag the valutgs ]0'1_|1h9'1 and 0 V;"th prg_bablfhtﬁbi, iah
network is trained to output the desired turning and spee and U.o, respectively. This parameter setling for wieig

values for solving the robot task (in the Matlab environment matrices are not critical for the t.a.sks in this work. 0 .
The last stage is the performance testing of the RC-bas The robot sensors on the training datasets are 5% noisy

controller in the T-maze task, which is based on the read¢-tim aussian noise fromV(0,0.05) which means effectively

communication between the Matlab process and the rob@lt(_o’ 15) in distance units) and on color sensors (Gaussian

simulator (implemented by TCP/IP sockets). The previou oise fror_nN(0,0.05_)) ({18] only con_siders noise-free dat_a
work [3] only considered off-line testing on pre-recorde or a particular version of the road sign problem solved with
Elman networks). The performance tests consider either 1%

sensory inputs from the simulator (not real-time). . . S
y np . ( .) . or 5% Gaussian noise on the robot sensors (this will be stated
The average number of timesteps for the realization of thfccordingly in the text)

T-maze task by the algorithm which generates the training

dataset is 26.3 timesteps for environment A (standard deviB. Results
tion of 1.6) and 34.9 timesteps for environment B (standard
deviation of 1.5). In the testing stage, the T-maze task dnas e
be accomplished in 38 and 46 timesteps for environments
and.B, respectw_ely (th|§ was arb|.trarlly set). These \ailtie .controller on the T-maze task. This analysis is made for both
not include the first 20 timesteps in which the robot stayk St'environments A and B

n the data acquisition stage as well as n the testing ph_ase.An example of the robot’s trajectory in the T-maze of
During these first timesteps, the reservoir starts at thini . . . S :

: . environment A is shown on Fig. 4(a). The solid line which
statex(t) = 0 and follows an undesired transient response
to th? 'np_Ut' The reservoir rga}ches a steady state after SOMErpe spectral radioud .z is the eigenvalue of the matriwv with the
transient interval. So the training of the readout outpyéta largest absolute value.

In this section, we will investigate how the number of
nsors in the robot model and the noise level on the
nsor readings affect the performance of the RC-based
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Fig. 4. Plots for the robot trajectory (a), robot sensorsdh)l actuators (c) when the sign appears at the left side ofdhédor in the T-maze of

environment A. The desired path takes 26 timesteps whereasotiteolled robot path takes 38 timesteps. The robot model hdistance sensors and
7 color sensors which are 1% noisy. (a) The solid line is tla rebot trajectory driven by the RC network. The dashed inan example of desired
trajectory. (b) The 14 inputs to the network (i.e., 7 diseusensors and 7 color sensors readings) in the testing stad@® ftimesteps. (c) The robot’s
actuators given by the RC network (solid line; for 30 timesjegind given by the desired path (dashed line; for 26 timesteps

connects the robot positions at each timestep represents goint of the trajectory has an abscissa which is lower than
real trajectory of the robot (driven by the output of thethe abscissa (300) of the left side of the main corridor (so
RC network) whereas the dashed line which connects smétle left and right sides of the corridor are delimiters).

boxes represents an example of a desired trajectory. Therpe taples show that a robot model with 7 sensors provides

corresponding sensory inputs and robot actuators are giVRRportant additional information for solving the T-mazeka

in Fig. 4(b) and Fig. 4(c), respectively. appropriately when compared to a robot model of 3 sensors.
Fig. 4 shows that the control task is smoothly performedhe model with 7 sensors increases performance over the

by a single control module (i.e., the RC network). In thafmodel with 3 sensors by 37% for environment A and by

example, the trajectory shows that both reactive and sequets9 for environment B (figures for the left goal - see

tial behaviors are achieved with our simple approach. Aftetable 1). It is also possible to observe that the effect of

training, the RC network can drive the robot exclusivelyincreasing the noise level on the sensor readings mainly

based on sensor data and can hold the past information f§ffects the experiments on environment B, specially thesone

posterior decision making. The recurrent pathways in theonsidering the robot model with 7 sensors. In this case, the

reservoir yield a fading memory which is crucial for solvingdegradation in performance is up to 13%. We conclude that

the T-maze task. Traditional feedforward neural networks a

not capable of this [18]. Furthermore, we can see that it

takes at least 5 timesteps between the last perception of the

sign in the corridor (timestep 9) and the start of the turning

movement (timestep 14) for this short environment. 100+
The robot trajectory given by the trained RC network in
the T-maze of environment B is shown in Fig. 5. We can 1501
observe that the time gap between the cue received in the
corridor and the decision making at the T-junction can be 2007
even greater (18 timesteps) while the task is still solved
correctly. 5 250
In order to know the repeatability of the performance of > 300l
the experiments, we generate statistics for environments A
and B, for different noise levels on sensor readings (1% or 350}
5%), and for distinct robot models (with 3 or 7 sensors).
The summarized results for each combination are presented 4001
on Tables | and II. The results are calculated after exegutin
the experiment for 10 different reservoirs, each one being 450+
evaluated 30 times. So, each combination results from 300 200 250 300 350 400 450
runs on the T-maze (150 runs for each goal). The numbers X (d.u)

in the tables show the percentage of examples (trajecjories

that are classified as successful for solving the T-maze taﬂi@J-C_S-I Plot for robf;]t trajectory _drivir_l ﬁthC rget\/\fork in %ﬂlﬂ%ﬁ%ﬂt
; : ircles represent the moment in which the robot loses thet sifjthe

We gon5|der that the run was successful “T the rObOt reaChgtan and the starting time of the turning at the T-junctionisTiime gap

the inner part of the correct arm at the final timestep. FQjorresponds to 18 timesteps. The robot model has 7 distanserseand 7

instance, the run on Fig. 5 was successful because the lagpr sensors which are 1% noisy.



TABLE |

PERCENTAGE OF CORRECT TRAJECTORIES FOR% NOISE ON SENSORS 100!
3 sensors 7 sensors 150+
Left Right Left Right -~
=}
Environment A 58% 62% 95% 93% 5 200
Environment B 37% 33% 82% 81% >
250+
TABLE || 300}
PERCENTAGE OF CORRECT TRAJECTORIES FOB NOISE ON SENSORS ‘
200 250 300 350 400 450
X (d.u.)
3 sensors 7 sensors
Left Right Left Right Fig. 6. Distrib_ution of endin_g_ points in en_vironment_A. Eacbirg
- represents the final robot position after 38 timesteps in fwhie RC
Environment A 67% 70% 93% 87% network drives the robot. There are 300 points (generatedoyifferent
Environment B 28% 26% 69% 69% reservoirs which run 30 examples each). Asterisks and sirelgresent left

and right goals for the current task, respectively.

the experiments in a longer T-maze (environment B) take
more advantage of the addition of extra information in the 100¢
form of more sensors in the robot model. Furthermore, higher
noise levels negatively influence difficult T-maze task (th
difficulty is directly related to the size of the main corrido
i.e., the time gap between cue and required response).
Part of the statistics summarized in the aforementioned

1501

2001

tables is available visually in Fig. 6 and Fig. 7. These figure 5 250

show the coordinates of the robot in its environment at the > 300l

final timestep of each run. The robot model with 7 sensors

and a noise level of 1% are considered here. Observe that 350

we only look at the final position of the robot, while it can

sometimes still collide against a wall during the internageli 4001

steps (a collision will cause a step back and a small change

on the direction of movement). There are 300 points for each 4501

figure which represent distinct runs through the respective 200 250 300 350 400 450
T-maze. A circle/asterisk means that the sign appeared in X (d.u)

the right/left side of the corridor for the corresponding.ru
We can note that circles are concentrated on the right arig. 7.  Distribution of ending points in environment B. Eachir

; ; resents the final robot position after 46 timesteps in whie RC
whereas asterisks are located mainly on the left arm, %‘%Otwork drives the robot. There are 300 points (generated(different

expected. reservoirs which run 30 examples each). Asterisks and sirelgresent left

and right goals for the current task, respectively.
IV. CONCLUSION AND FUTURE WORK

In this work we presented a simple approach to the
road sign problem by employing Reservoir Computing (RCbhe light sign) determines adequate output decisions, (e.g.
networks in the modeling of the robot controller. RC isturn right or left) after some delay period. The T-maze task
a simple technique which provides easy and fast traininig the most common form of the road sign problem and is
of recurrent neural networks. The reservoir is a dynamicadhckled in this work. The difficulty of this task relies on
system whose states are mapped in the readout output laybe time gap which exists between the cue/sign received
This mapping is learned through standard linear regressiamd the appropriate required response. Only a single dontro
techniques, which makes this technique very powerful,davoi module is used for solving this task so that reactive and se-
ing the convergence problems of previous algorithms likguential behaviors are integrated and learned simultasheou
Backpropagation Through Time as well as the need to unfoledurthermore, we show that the control task is accomplished
the network in time as in [18]. The technique is biologicallysuccessfully with time gaps of up to 18 timesteps between
plausible [8], what is in line with the most recent advancethe cue and the response.
in intelligent autonomous systems which seek models with This work is a significant extension of previous exper-
more and more biological foundations. iments developed in [3]. In the current paper, the testing

The road sign problem is a type of delayed response tasf, robot controllers is done in real-time in contrast to the
where relevant input information gathered in the past (e.goffline testing on pre-recorded sensory inputs in [3]. Other



differences for the current work include: the speed is not9]
constant and is controlled by the RC network, the sensor data
are not resampled and the robot model has a limited numq%]
of sensors. We generate statistics for the experimentdsn th
work, making it possible to draw reliable conclusions.
Further study on longer T-maze environments which re21!
quire longer delay periods for the postponed responsetis lef
as future work. In this case, the design of an unsupervisétf
method for adapting the timescale of the reservoir to thE3
input flow may be an interesting approach that would wor
for arbitrary delay periods. For instance, by lowering the
timescale of the reservoir when the input is slowly varyin 14
(when the robot drives in a straight line along the main
corridor) and increasing this timescale back otherwise, tHS]
performance can greatly be enhanced for long delay perioﬂ%]
because the memory of the reservoir is increased with this
new scheme[15]. These ideas of working with the timescale
of reservoirs can find applications in other areas such 4!
speech recognition [20], [21]. We also plan to validate thes]
current work on a real robotic setup using the mobile robot
e-puck [17]. 19]
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