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Abstract— Animals such as rats have innate and robust localization capabilities which allow them to navigate
to goals in a maze. The rodent’s hippocampus, with the so called place cells, is responsible for such spatial
processing. This work seeks to model these place cells using either supervised or unsupervised learning techniques.
More specifically, we use a randomly generated recurrent neural network (the reservoir) as a non-linear temporal
kernel to expand the input to a rich dynamic space. The reservoir states are linearly combined (using linear
regression) or, in the unsupervised case, are used for extracting slowly-varying features from the input to form
place cells (the architectures are organized in hierarchical layers). Experiments show that a small mobile robot
with cheap and low-range distance sensors can learn to self-localize in its environment with the proposed systems.
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1 Introduction

The most standard approach to robot localiza-
tion is situated within the group of probabilistic
methods such as SLAM (Simultaneous Localiza-
tion And Mapping) which is used for mobile robots
usually equipped with expensive laser scanners.
The SLAM method can under suitable assumptions
(Thrun et al., 2005) efficiently build a map of the
environment while the robot navigates in it.

From biology, it is known that the hippocampus
region of the brain is responsible for storing events
as well as spatial information from the environment
(Moser et al., 2008). Studies carried on rats show
that some cells in the hippocampus, called place
cells, learn to respond in accordance with the rat
location in its environment. A place cell has a peak
activity when the rat is located at a specific area
of the environment, i.e., at the place field of the
cell. On the other hand, grid cells code for multiple
locations which are spatially distributed in a grid.
It is assumed that place cells can be formed based
on the processing of grid cells (Moser et al., 2008).

The current work investigates the application of
biologically inspired architectures to the prob-
lem of learning the localization ability for a mo-
bile robot in an unstructured environment. Ro-
bustness, learning and low computation time are
some characteristics of these biological inspired
systems. Most systems are based on visual in-
put from camera (Arleo et al., 2004; Franzius
et al., 2007; Stroesslin et al., 2005; Milford et al.,
2007) and models hippocampal place cells from rats
(Arleo et al., 2004; Franzius et al., 2007; Stroesslin
et al., 2005; Milford et al., 2007).

In this paper, we use Echo State Networks (ESN)
(Jaeger, 2001) as a tool for learning the desired
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task. These networks, known also as Reser-
voir Computing (RC) networks (Schrauwen et al.,
2007), are composed of a randomly generated and
non-trainable Recurrent Neural Network (RNN),
the reservoir, and a readout output layer which
is trained by standard linear regression methods,
in a supervised approach. The training is simple
and does not suffer from convergence problems, as
the reservoir itself is not trained. Fig. 1 shows
the architecture of an ESN. In this work, the ESN
is used in conjunction with two different learning
paradigms: supervised and unsupervised. Usually
RC systems are trained in a supervised way. Here
we also present an architecture which learns the
slow features from the input data in an unsuper-
vised way as in (Antonelo and Schrauwen, 2009).
We use the reservoir, in the first lower layer, as a
non-linear temporal kernel which expands the in-
put space to a high dimensional space. The up-
per layer in the architecture learns using the Slow
Feature Analysis (SFA) algorithm (Wiskott and
Sejnowski, 2002) which models roughly the grid
cells in the hippocampus. The last upper layer
learns by Independent Component Analysis (ICA)
(Hyvärinen and Oja, 2000), implementing a sparse
coding on the SFA output to form the hippocampal
place cells.

Our robot model has only 8 limited-range distance

Figure 1: Echo State Network. Solid and dashed
lines represent fixed and trainable connections, re-
spectively.
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sensors, which are the only input used for the local-
ization task. Using this scheme, we show that it is
possible to learn, either in a supervised or unsuper-
vised way, place cells which can efficiently localize
a real robot. This work is organized as follows. In
Section 2, we present the ESN approach as well
as the unsupervised learning algorithms SFA and
ICA used in our proposed architectures. Experi-
ments and results are shown in Section 3 and the
conclusion in Section 4.

2 Methods

2.1 Echo State Network

An ESN is composed of a discrete hyperbolic-
tangent RNN (i.e., the reservoir) and a linear read-
out output layer which maps the reservoir states
to the desired output (Fig. 1). The state update
equation for the reservoir and the readout output
equation are as follows:

x(t + 1) = f(Wr
rx(t) + Wr

iu(t) + Wr
b). (1)

y(t + 1) = Wo
rx(t + 1) + Wo

b. (2)

where: u(t) denotes the input at time t; x(t) rep-
resents the reservoir state; y(t) is the output; and
f() = tanh() is the hyperbolic tangent activation
function (commonly used for ESNs). The matri-
ces W represent the connection weights between
the nodes of the complete network, where r, i, o, b
denotes reservoir, input, output, and bias, respec-
tively. All weight matrices representing the con-
nections to the reservoir (denoted as Wr

· ) are ini-
tialized randomly, while all connections to the out-
put layer (denoted as Wo

· ) are trained. The initial
state is x(0) = 0. The random generation of Wr

r is
such that the largest absolute eigenvalue of W, the
spectral radius |λmax|, is less than 1. In this way,
the randomly generated reservoir weights (N(0, 1))
are rescaled such that the system is not chaotic,
but its dynamic regime is situated at the edge of
stability (Jaeger, 2001). The value for |λmax| and
other matrices Wr

i and Wb are given in Section 3.

2.2 Supervised Learning

Supervised learning is the usual training approach
for ESNs. Architecture 1 in Fig. 2(a) illustrates
the same network in Fig. 1. Consider that the to-
tal number of time samples of the training dataset
is ns. Training is performed using linear regres-
sion on the reservoir states. For this, the reser-
voir is driven by an input sequence u(1), . . . ,u(ns)
(robot sensors) which yields a sequence of states
x(1), . . . ,x(ns) using (1). In this process, state
noise can be added to (1) for regularization pur-
poses, The generated states are collected row-wise
into a matrix M of size ns×(nr +1) where the last
column of M is composed of 1’s (representing the
bias). The desired teacher outputs (robot location)

(a) Architecture 1 (b) Architecture 2

Figure 2: Reservoir architectures. Shaded lay-
ers (readout, SFA and ICA layers) can be trained
whereas white layers (input and reservoir) have
fixed non-trainable weights.

are collected row-wise into a matrix Ŷ (there is an
output unit for each location). Then, the readout
output’s matrix Wo

rb (i.e., the column-wise con-
catenation of Wo

r and Wo
b) of size (nr + 1)× no is

created by solving (in the mean square sense):

MWo
rb = Ŷ (3)

Wo
rb = (M⊤M)−1M⊤Ŷ (4)

2.3 Unsupervised Learning

Slow Feature Analysis

In order to autonomously learn the localization
ability for a mobile robot, we need to use an un-
supervised learning mechanism which can extract
significant information from only 8 distance sen-
sors. For this, we use Slow Feature Analysis (SFA)
to learn the slowly-varying features of the reser-
voir states which in turn is stimulated by the dis-
tance sensors. SFA, introduced in (Wiskott and
Sejnowski, 2002), is based on the concept of tem-
poral slowness for learning invariant or slowing
varying signals from the input data. In (Franzius
et al., 2007), an hierarchy of SFA layers is used for
modeling grid cells from the entorhinal cortex of
rats and also hippocampal place cells.

Given a high-dimensional input signal v(t), find
a set of scalar functions gi(v(t)) so that the SFA
output yi = gi(v(t)) varies as slowly as possible
and still carries significant information. Mathe-
matically, find SFA output signals yi = gi(v(t))
such that (Wiskott and Sejnowski, 2002):

∆(yi) := 〈ẏ2
i 〉t is minimal (5)

under the constraints

〈yi〉t = 0 (zero mean) (6)

〈y2
i 〉t = 1 (unit variance) (7)

∀j < i, 〈yiyj〉t = 0 (decorrelation and order)(8)

where 〈.〉t and ẏ represent temporal averaging and
the derivative of y, respectively.
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Learning Algorithm: Before applying the learn-
ing algorithm, the input signal v(t) is normal-
ized for having zero mean and unit variance. We
do not consider the common non-linear expan-
sion (Wiskott and Sejnowski, 2002) used as a pre-
processing step, once the reservoir already tempo-
rally expands the input signal. So, gi(v) = wT v.
The SFA algorithm is defined as:
Solve the generalized eigenvalue problem:

AWsfa = BWsfaΛ, (9)

where A := 〈v̇v̇T 〉t and B := 〈vvT 〉t.
The eigenvectors w1,w2, ...,wnsfa

correspond-
ing to the ordered generalized eigenvalues
λ1 ≤ λ2 ≤ ... ≤ λnsfa

solve the learning task
defined above, satisfying (6-8) and minimizing
(5) (see (Wiskott and Sejnowski, 2002) for more
details). This procedure is guaranteed to find the
global optimum.

Independent Component Analysis

The learning task for Independent Component
Analysis (ICA) can be defined as follows. Sup-
pose that a linear mixture of signals q1, q2...qn can
be used for finding the n independent components
or latent variables s1, s2...sn. The observed values
q(t) = [q1(t), q2(t)...qn(t)] can be written as:

q(t) = As(t) (10)

where A is the mixing matrix; and s(t) =
[s1(t), s2(t)...sn(t)] is the vector with the indepen-
dent components (both A and s(t) are assumed to
be unknown). After finding an estimate for matrix
A, vector s(t) can be written as:

s(t) = Wicaq(t) (11)

where Wica is the inverse matrix of A. The funda-
mental assumption for ICA is that the components
si are statistically independent and have nongaus-
sian distributions (Hyvärinen and Oja, 2000).

Learning algorithm: In this work the matrix Wica

is found with the FastICA algorithm (Hyvärinen
and Oja, 2000). Before using ICA, the observed
vector q(t) is preprocessed by centering (zero-
mean) and whitening (decorrelation and unit vari-
ance). FastICA uses a fixed-point iteration scheme
for finding the maximum of the nongaussianity of
wq(t) (where w is a weight vector of one neuron).
This means that the independent components will
mostly be clustered, concentrated on specific val-
ues, in contrast with the more random values of
Gaussian variables. The next units wi in Wica are
found one by one such that the outputs wT

i q are
decorrelated (Hyvärinen and Oja, 2000).

The upper-most layer in Architecture 2 performs
linear sparse coding on the SFA outputs. By re-
defining variables, the ICA layer is denoted by:

yica(t) = Wicaysfa(t), (12)

(a)

(b)

Figure 3: (a) E-puck robot extended with infra-red
sensors which can measure distance in the range 4
cm - 30 cm and environment composed of three
rooms and one corridor. (b) Robot trajectory in
environment for 60.000 timesteps (or 3.3 hours)
with labeled asterisks representing delimited loca-
tions.

3 Experiments

3.1 Introduction

We use an environment with 3 rooms and a corridor
connecting them, shown in Fig. 3.1. There is a
camera on top of the environment which records
the position of the robot at each timestep. In this
way, we can use this information for the supervised
learning task (defined in Section 2.1).

Robot and Datasets : The e-puck robot with longer-
range [4 cm - 30 cm] infra-red sensors is used for
the experiments in this section (see Fig. 3.1). For
generating datasets with recorded sensor readings,
we use a robot controller written in Matlab that
communicates with the e-puck through a Bluetooth
link. The robot controller follows a probabilistic
wall following algorithm which switches from left to
right wall following (or vice-versa) with a certain
probability ρ. In this way, the robot trajectory
is randomized (see Fig. 3.1). One iteration (for
sensing and acting) lasts 200 ms on average.

The speed of the robot is variable as the motor ac-
tuators may have values in the interval ±[15,385].
So, the task has to deal with multiple timescales
present in the input data. The robot sensors are
sequentially read while the robot is moving in the
environment, so there might be inconsistencies in-
volved in this process which we do not take into
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account because the temporal processing capabili-
ties of the reservoir are supposed to cope with this
problem. The signal u(t) ∈ [0, 1] is built by saving
the 8 distance sensors of the robot during naviga-
tion and scaling them to the interval [0, 1]. The
total number of samples we recorded amounts to
192.000 timesteps, which means approximately 11
hours of robot navigation.

3.2 Supervised Learning

Previous work has tackled supervised learning with
ESNs in localization for simulated mobile robots
(Antonelo et al., 2008). Here, we also shown that
it perfectly works for real robots. The parameter
configuration for this task using Architecture 1 is
as follows. The reservoir size is nres = 1200 neu-
rons. The spectral radius is |λmax| = 0.99. We use
three leak rates in the reservoir α1 = 0.2, α2 = 0.01
and α3 = 0.005. The matrix connecting the input
to the reservoir (Win) is initialized to -2, 2 and 0
with probabilities 0.15, 0.15 and 0.7, respectively.
The number of outputs in the readout layer cor-
responds to the number of rooms or locations. At
each timestep, there is only one active output found
by a winner-take-all function.

The results are shown in Fig. 4. The training pro-
cess uses 7/8 of the training data (1/8 is used for
testing) and it takes around 208 seconds, of which
140 seconds are spent on generating the matrix W

using (1). All experiments are based on a plat-
form with an Intel Core2 Quad CPU and 8 GB
memory. The classification performance for room
detection is very good considering the random be-
havior of the robot: 98.1 % of correct classified
samples from test data. The upper plot in Fig. 4
shows that the trained RC network is efficient in
detecting the current robot room. It is possible to
see that most errors are made in the boundaries be-
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Figure 4: Location detection results on test data
with Architecture 1. The grey solid line represents
the desired robot location while the real network
output is represented by black points (the miss-
classifications are marked with red circles). Top:
the environment is divided in 3 rooms and 1 corri-
dor. Bottom: 34 locations smaller delimited loca-
tions as determined by the asterisks in Fig. 3.1

tween a room and the next one, represented by red
circles in the figure. When the task is modified to
detect the current smaller delimited location (with
the same parameter configuration), the trained sys-
tem can also detect the location with a good per-
formance: 83.3% on test data. These values are
the average results over multiple experiments with
distinctly generated reservoirs. The standard devi-
ation is small due to the noise added to the sensors
(from N(0, 0.005)) and the reservoir state update
equation for regularization purposes. An analysis
of the influence of faulty sensors on the localization
ability is planned as future work. In this case, the
ESN could easily have additional outputs trained
for predicting the value of the faulty sensors for
improving robustness.

3.3 Unsupervised Learning

We optimized several parameters for Architecture
2 using the error measure defined in Eq. (15):

Aj =

∑
i6=p(j) n(i, j)d(i, p(j))
∑

i6=p(j) d(i, p(j))
(13)

βj =
Aj − n(p(j), j)

n(p(j), j)
− 0.5kurt(j) (14)

B =
∑

j

βj/nica (15)

where: p(j) is the location most representative of
ICA unit j (i.e., unit j is most active at location
p(j)); n(i, j) is the number of samples in which unit
j is active (above a certain threshold) for location
i; d(i, k) is the distance between locations i and
k; kurt(j) = 〈(yica(j))

4〉− 3 is the kurtosis for ICA
unit j. In this way, βj is a measure for a place cell j
which should be minimized for getting units which
only activate for only one specific location (first
term in Eq. (14)) and which activates strongly at
this location (kurtosis term).

The optimal combination for the number of neu-
rons in each reservoir in the bottom and top RC-
SFA modules is nres1 = nres2 = 600 neurons. The
optimized leak rates were αres1

1 = 0.1 αres1
2 = 0.8

for the lower reservoir and αres2
1 = 0.1 αres2

2 = 0.05
for the upper reservoir. The optimal spectral ra-
dius in each reservoir was |λmax|res1 = |λmax|res2 =
0.99. Each optimization experiment was executed
10 times. The number of neurons for lower and
upper SFA layers, and ICA layer are nsfa1 = 120,
nsfa2 = 36 and nica = 36. Besides, random noise
(N(0, 0.001)) is added to the reservoir state update
equation (Eq. (1)) during state generation of both
reservoirs for the training of upper SFA layers. The
matrix connecting the input to the lower reservoir
(W1

in) is initialized to -2, 2 and 0 with probabili-
ties 0.15, 0.15 and 0.7, respectively. For the upper
reservoir, W2

in is initialized to -0.5, 0.5 and 0 with
probabilities 0.15, 0.15 and 0.7, respectively. The
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Figure 5: Results using Architecture 2. Top: the
real robot occupancy grid. Bottom: the respec-
tive spatially-ordered ICA activation map (white
dots denote peak responses and black dots repre-
sent lower responses).

learning process also occurs in steps, from bottom
module to upper modules, taking approximately
the same amount of time as in the supervised case.

After applying the learning algorithm, we observe
that architecture 2 generates several place cells
for the robot environment. In (Antonelo and
Schrauwen, 2009), a simpler environment with 2
rooms and a corridor was used to generate place
cells, using an architecture with only one RC-
SFA module, which could distinguish between two
rooms. Although one RC-SFA module can also
learn more delimited locations, our architecture
with 2 concatenated RC-SFA modules generates
qualitatively better place cells, handling multiple
timescales present in the input signal. A quantita-
tive analysis and comparison between architectures
are left as future work. In Fig. 5, the place cells are
ordered so that they correlate with the real robot
location. We see that for most of the time there is a
place cell which is active. Furthermore, most of the
units are dependent on the robot direction, show-
ing that the direction is a slowing-varying feature
extracted from the distance sensors as well.

4 Conclusion

In this work, we have shown that it is possible to
learn the localization capability for a mobile robot
either in a supervised way, showing explicitly the
desired location during training, or in an unsuper-
vised way, learning the slow features from the input
data to form place cells, using only few distance
sensors as input. Our proposed architectures are
composed of a randomly generated and fixed recur-
rent neural network, the reservoir, which functions
as a non-linear temporal kernel which expands the
input to a high dimensional space. The reservoir
states can be linearly combined, using linear re-
gression, to approximate a desired robot location in
the output layer or, in an unsupervised way, can be
used for non-linear expansion before applying Slow
Feature Analysis (SFA) and Independent Compo-

nent Analysis (ICA) to form place cells.

As future work, we plan to make SFA and ICA
an on-line learning algorithm so that the mobile
robot can generate place cells in real-time. It is
also desired that an on-line reinforcement learning
mechanism for autonomous deliberative navigation
can be created based on the place cell outputs.
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