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Abstract— Echo State Networks (ESN) are dynamical learning models composed of two parts: a recurrent
network (reservoir) with fixed weights and a linear adaptive readout output layer. The output layer’s weights are
learned for the ESN to reproduce temporal patterns usually by solving a least-squares problem. Such recurrent
networks have shown promising results in previous applications to dynamic system identification and closed-loop
control. This work applies an echo state network to control the bottom hole pressure of an oil well, whereby the
opening of the production choke is manipulated. The controller utilizes a network to learn the plant inverse model,
whose model input is the plant output and the vice-versa, and another network to compute the control action that
induces a desired plant behavior. Despite the nonlinearities of the well model, the ESN effectively learned the
inverse model and achieved near global setpoint tracking and disturbance rejection, with little setpoint deviation
in the latter case. These results show that echo state networks are a viable tool for the control of complex
dynamic systems by means of online inverse-model learning.

Keywords— Online System Identification, Reservoir Computing, Echo State Networks, Intelligent Control

Resumo— Redes de Estado de Eco (Echo State Network, ESN) sdo modelos de aprendizagem dinidmicos
compostos por duas partes: uma rede neural recorrente com ponderagao fixa e uma camada de saida de pesos
adaptativos. Com a resolucao de um problema de minimos quadrados, os pesos da camada de saida sdo treinados
para a rede reproduzir padroes temporais. Tais redes obtiverem resultados promissores na identificagdo e controle
em malha-fechada de sistemas dinamicos. Este trabalho aplica um controle adaptativo usando redes de eco no
controle da pressao de fundo de um pogo de petrdleo, atuando sobre a abertura da vélvula de produgao. O
controlador utiliza as redes de eco para identificar o modelo inverso da planta, que calcula a agdo de controle
para a planta seguir um comportamento desejado, utilizando a saida da planta como entrada da rede e vice-
versa. Apesar da nao-linearidade do modelo do poco, a rede de eco foi eficaz em aprender um modelo inverso,
demontrando excelente desempenho em seguimento de trajetéria e rejeicao de perturbagdo, com baixo desvio do
ponto de operagao no dltimo caso. Tais resultados demonstram a viabilidade das redes de eco para controle de

sistema dindmicos complexos por identificacdo de modelo inverso.

Palavras-chave— Identificagdo de Sistemas Online, Computacao por Reservatério, Redes de Estado de Eco,

Controle Inteligente

1 Introduction

An Echo State Network (ESN) is a recurrent neu-
ral network (RNN) with a (usually sparsely con-
nected) hidden layer whose weights are fixed and
randomly assigned. The training takes place only
at the output layer, usually by linear regression
methods (Jaeger, 2001), yielding an efficient learn-
ing process with global convergence properties.
Echo State Networks are widely used nowadays for
applications involving time series prediction and
system identification, arguably so because of their
ability to model and reproduce spatio-temporal
patterns. Examples of works using this technique
are: stock price prediction (Lin et al., 2009), learn-
ing of robot navigation behaviors (Antonelo and
Schrauwen, 2015), noninvasive fetal QRS detec-
tion (LukoSevicius and Marozas, 2014) and even
language modeling and processing (Hinaut and
Dominey, 2012).

Applications to dynamic system control that
use the structure presented in this work are also

found in the literature. Proposed initially by
Waegeman et al. (2012), the ESN based control
structure considered in this work was applied to
the control of a variable delay heating tank, a
steady cruise airplane pitch control, and to bal-
ance control of an inverted double pendulum. To-
gether with a sliding mode strategy, Park et al.
(2014) used this structure to control a hydraulic
excavator, a system with heavy nonlinearities.
Galtier and Mathieu (2015) present another type
of control structure, which uses least squares to
train both the output and the input weights of
only one ESN.

This work is inspired by (Waegeman et al.,
2012) and other ESN-based applications in the
oil industry: Antonelo et al. (2017) showcases not
only the model identification of an offshore riser
to serve as an observer, but also the design of soft
sensors for the bottom-hole pressure since the real
physical sensors operate in hazardous deep wells
and, thus, are prone to failures. That work showed
that an ESN can successfully model the nonlin-



ear behavior of a riser. However, the riser model
did not account for pressure drop due to friction
along the tubing. Motivated by the promising per-
formance of the online learning control structure
(Waegeman et al., 2012) and the universal dy-
namic system approximation of ESNs (Antonelo
et al., 2017), the current work proposes their ap-
plication to the control of an oil well.

In this context, this work faces two challenges.
First, the ESN must learn an inverse model of the
plant, meaning that if the plant reacts with an
output y to an input u, y = f(u), then the network
must output u to an input y, u = f~1(y). Second,
the control structure must compute a control ac-
tion that will bring the plant’s controlled variable
to a certain desired value at a future time.

The riser model considered herein presents
heavy nonlinearities, such as the pressure loss due
to friction dynamics. Different from the classi-
cal approach, such as the PID or the H,, control
strategy shown in (Jahanshahi et al., 2012), from
which the riser model used in this work was origi-
nated, the ESN based controller is non-linear and,
as such, can possibly achieve good performance
without assigning an operating point. Also, for
being a technique derived from machine learning,
almost no prior knowledge of the model is needed
to successfully tune the ESN based controller.

In section 2, we define the Echo State Net-
work, the learning algorithm used, and describe
the control loop used. In section 3, the oil well
model is defined. In section 4, the results of the
experiments made in this work are shown. Section
5 is the conclusion of this work.

2 Echo State Network Based Controller

Originally proposed by Waegeman et al. (2012),
the ESN-based controller is composed of two
RNNs, one denoted “Learning Network” (ESN-L)
and the other referred to as “Control Network”
(ESN-C). The Echo State Network is represented
in Figure 1 and is a Recurrent Neural Network
proposed by Jaeger (2001) which is governed by
the following dynamic discrete time equations:

alk +1] = (1 —v)a[k] 1)
+f(Wralk] + WHi[k] + W5)
o[k + 1) = Wyalk + 1] (2)

where: the current state of the reservoir neurons,
represented by the nodes in the center of Figure
1, is given by alk], a vector usually with a di-
mension magnitudes higher than the input or the
output; the current values of the input and out-
put neurons, represented by the nodes in the left
and right rectangles in Figure 1 respectively, are
i[k] and o[k], respectively; v is a tunable param-
eter called leak rate, which governs how much of
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Figure 1: Representation of an Echo State Net-
work.

the previous state is kept into the current reser-
voir’s state. The weights, represented by the ar-
rows in Figure 1, follow the notation W}ﬁom, with
“0” meaning the output neurons, “r” meaning the
reservoir, and “¢” meaning the input neurons. The
bias is denoted by “b.” The dashed arrows in Fig-
ure 1 are the trainable ones and the solid arrows
are fixed weights. The network has a number N of
neurons, which is the dimension of a[k]. The func-
tion f is the hyperbolic tangent f = tanh(-) and
is called an activation function in neural network
literature.

In a standard Recurrent Neural Network
(RNN), all the weights are trained by Backpropa-
gation Through Time (Mozer, 1995). Such a train-
ing method of RNNs incurs a heavy computational
cost, so ways of lowering this cost must be devised
for RNNs to become practical.

The Echo State Property (Jaeger et al., 2007;
Jaeger, 2001) is achieved when both the internal
stability and steady state do not depend on the
initial conditions (i.e., the reservoir has a fading
memory). It has been shown that, when a recur-
rent neural network has this property, the network
can learn by training only the output weights.
Consequently, this reduces the problem of RNN
training to a least squares problem (when trained
to minimize the mean squared error). The num-
ber N of neurons is proportional to the learning
capacity of the Echo State Network and the com-
putational cost thereof. So the number N should
be set only large enough for the network to not
underfit.

Herein, the initialization method proposed by
Waegeman et al. (2012) is followed, whereby every
weight of the network is initialized from a normal
distribution A(0,1). Then, the reservoir weight
matrix WY is scaled so that its spectral radius
(eigenvalue with largest module) p is at a certain
value able to create reservoirs with rich dynami-
cal capabilities. Waegeman et al. (2012), Jaeger
(2001) and Jaeger et al. (2007) argue that set-
ting p < 1 in practice generates reservoirs with
the echo state property (and in many cases max-
imize the performance of the network). Further,
Wi and Wi are then scaled with the scaling fac-



tors fi and f;, respectively, to determine how the
input will influence the network.

Figure 2 shows a block diagram representation
of the control loop, which is composed of two Echo
State Network blocks. One of the blocks depicted,
“ESN-L”, also referred to as “Learning Network,”
takes both the present plant output (denoted as
y[k] in Figure 2) and a past plant output shifted
0 timesteps to the past (denoted as y[k — §]) as
the network input. The constrained control ac-
tion at time k — § (denoted as x[k — 4] in Figure
2), becomes the desired output of the correspond-
ing training example. The Learning Network then
tries to find the inverse model by inserting these
data into a learning algorithm which updates the
learning parameters (depicted by the dashed block
in Figure 2). The algorithm used in this work is
the Recursive Least Squares (RLS).

The Recursive Least Squares is an adaptive
filter that solves a Weighted Linear Least Squares
Problem using a recursive update formula for its
parameters. The RLS used in this work is derived
from the analytic solution of the Weighted Linear
Least Squares Problem and obeys the following
equations (Waegeman et al., 2012):

P0] = I (3)

1
o

e[k] = W[k — 1]a[k] — x[#] (4)
]

— — 1]alk]a”
piy = Ple—11_Plk—tala” WPk —1)
(6)

-1
A AN+ aT[k]P[k — 1]alk])
W7[k] = W[k — 1] — e[k]P[k]a[k]
where k is the current timestep and P[k] is called
the covariance matrix, which can be considered
as P[k] = (a[k]aT[k]) !, as defined by Waegeman
et al. (2012); e[k] is the error between the desided
output and the actual output; I is the identity ma-
trix. Also, a represents how much is known about
the system, for it serves to evaluate P[0]. The
larger the value of o, the more one is admitting to
not know the nature of the system.

The forgetting factor A models how much
weight the most recent samples will have in re-
lation to the previous ones. The actual cost func-
tion for a forgetting factor included in the RLS
algorithm is:

J = A F(ylk] - W7alk]) (7)

=0

For A < 1, the most recent samples are penal-
ized more strongly. Smaller values of A\ tend to
make the algorithm adapt better to changes in the
model, sacrificing steady state performance. So,
heuristically literature recommends that A > 0.9.
The parameter A should be close to 1 when the
dynamic system is in steady state, however it is
desirable to have A close to 0.9 when the system

is undergoing transients. This work implements
the method for an adaptive forgetting factor pro-
posed by Paleologu et al. (2008). The resulting
equations that govern the dynamics of the forget-
ting factor are as follows:

— min Ogq [k]gv [k]
A =i o b = o )
o2k +1] = ao?[k + 1] + (1 — a)e?[k] (9)

ag[k +1] = ac?[k + 1] + (1 — a)¢*[k] (10)
oplk +1] = Boglk + 1]+ (1 - B)e’[k]  (11)

1
a=1- (12)

1
p=1- KN (13)
qlk] = a” [K]P[k]a[k] (14)

in which o, is an estimation of the expected value
E(x) and v is the noise associated with the er-
ror. The o, are updated by moving averages us-
ing time constants « and §, with K, = 6 and
Kg = 18. The maximum value of the forget-
ting factor is denoted by Amax, whose value is
Amax = 0.9999 so as not to compromise setpoint
tracking. The algorithm lowers A\ while the system
is undergoing a transient (where the error rises)
and raises A in steady state (where the error is
near 0). The threshold Apax is imposed in order
to ensure A < 1. ¢ is a small number to avoid
division by zero.

At the same time-step that ESN-L is trained,
the ESN-C block receives a copy of W and com-
putes the control action u[k] that, according to
the inverse model identified by “ESN-L”, guaran-
tees that, given that the plant’s current output is
y[k], the future output will be y[k + d] = y[k +4].
Since information learned from ESN-L is copied,
ESN-C is essentially an approximation to the in-
verse model which is used to compute x[k]. As
input, ESN-C receives the present plant output
y[k] and the desired plant output at § time-steps
into the future, which is referred to as y[k + 4.
This is essentially the input to ESN-L, but dis-
placed § time-steps into the future. The control
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Figure 2: Block diagram of the ESN-based control
framework.



action u[k] is then processed by the S(z) block
before being input to the plant and the Recursive
Least Squares algorithm as x[k] , as demonstrated
in Figure 2. This block represents the system con-
straints, such as saturation and rate limiting. The
timestep delay represented by ¢ is a tunable pa-
rameter of the framework, which is proportional
to the time constants of the system. A proof of
convergence of this type of control loop is found
in (Waegeman et al., 2012).

3 The Well Model

The oil well model from (Jahanshahi et al., 2012)
was selected for the case study to test the con-
trol methodology based on echo state networks.
Figure 3 is a diagram representing the well struc-
ture, and also the physical location and meaning
of each variable involved. The center of the figure
depicts the tubulation where the oil is produced,
called “Tubing”. The borders represents where gas
is injected for gas-lift, denoted as “Annulus”.
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Gas lift " \" ” w. outlet
\ 1 out
Gas choke \ L5
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Figure 3: Schematic representation of the well
model. Adapted from (Jahanshahi et al.,2012)

The well model consists of a choke valve for
gas-lift injection, an annulus, a tubing, and a pro-
duction choke valve at the end of the oil outlet.
This is a typical configuration of a subsea satel-
lite oil well, whose dynamics are described by the
following state equations:

mG,a = W@G,in — WG, inj (15)
mG,tb = WaqG,inj + W@, res — WG, out (16)
mL,tb = WL,res — WL,out (17)

where the name convention for variables is x ,:

e The x represents the variable’s nature, with
m being the mass and w the mass flow.

e The y represents the variable’s phase, with G
being the gas and L the liquid/oil phase. The
model assumes no water phase.

e The z represents the variable’s location in the
well, where tb is the tubing and a is the an-
nulus.

If y is absent and the variable is in the form
x,, then the variable does not describe a specific
phase. The flow equations are as follows:

WG in = Kystiz/pGin max(Pye — Pu) - (18)
wa,ing = Kinj \/PG,ab max(Pyy, — Ppp) (19)

Wout = Kprul \/pmim,t maX(Ptt - PO)
Wres = PImax(Pyes — Pop,)

WL res = (1 - agab)wres
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WG, res = aG7bwres

WL out = (1 - az;n7t)wout

(20)
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(25)

_.m
W@, out = aGﬁtwout

in which K, are tuning parameters to bring the
dynamics close to a certain application. These
variables are described in Figure 3, except P
which is the outlet pressure, normally of the man-
ifold, oy, is the mass fraction of the bottom flow,
and ag, is the mass fraction of the outlet flow.
Further, o, is assumed to be constant and ag,
is calculated as:

m 1—arq)pa,

o, = — L= areies (26)
arpr+ (1 —apipat)

apy =20 —apy (27)

apy = WL, resPG,tb (28)

WL, resPG,tb T (UJG’inj + OJG, ’I“GS)pL
& = MLt = pLVen

29
Virr (29)

Q
S
|

where @y, is the average liquid fraction inside the
tubing, Vjy, is the assumed volume at the bottom-
hole, V; is the volume in the tubing, and py, is
assumed to be constant. The rest of the densities
are evaluated as:

PuMc

PGab = RT. (30)
pain = (31)
Pet =y, + %ijnf;fflzL,bh/PL (32
B = ma, + m‘L//;tb —pVon (33)
PG th = % (34)

Pmizt = ornepr + (1 —ap)pa (35)

with p,,,;, being the average mixture density inside
the tubing, T, and T; the temperatures in the an-
nulus and tubing, assumed to be constant, R the



universal gas constant, and M, the gas molecular
weight.
The pressures are calculated as follows:

RTamG,a

P, = 36
a La
Pab:Pat'i'M (37)

Va
pa, BT}
Py = ——— 38
= LT (39
P, = Pyt + Prnin9Le + Fi (39)
Py, = Py + Fo + prgLon (40)

in which L, is the length of the annulus, L; is the
length of the tubing, Ly is the assumed length
of the bottom hole. For being modeled as dis-
turbances, Pr.s, Pys and Py are considered to be
constant. The F} is the loss due to friction from
the bottom hole to the injection point, also as-
sumed to be constant, and F; is the loss due to
friction along the tubing, calculated as:

—2
AoprU; Lok
= L (a1)
1 e \'" 69
—— = —1.81 _— —_— 42
oW 0810 <<3-7Dt> + Re, (42)
BrinUm e D
Re, = PmisZmt 2t (43)
1
Um,t = Usl,t + Usg,t (44)
— 4(WG in T O‘g bwres)
Ugor = : : 45
sg,t pG,tﬂ-D? ( )

The above equations are derived from Haa-
land’s solution to the Colebrook-White equation
(1983) for the calculation of the friction factor of
the tubing A\;. The Re; is the Reynolds number of
the flow at the tubing, U,, ; is the average veloc-
ity in the tubing, U, is the average superficial
velocity of the gas phase and Usu is the average
superficial velocity of the liquid phase, assumed
to be constant. The D, is the tube diameter, u
is the viscosity of the fluid. w,.s is the average
inlet flow rate, which is assumed to be constant
to simplify the dynamics of the system. The pa-
rameters’ values are borrowed from well n° 1 of
(Aguiar et al., 2015).

As it can be seen from all the equations that
describe the oil well, the model is interesting for
the control methodology presented in this work
for its high nonlinearities. For the closed loop sys-
tem to converge to the setpoint, the inverse model
must be correctly learned by ESN-L, not only min-
imizing training error, but also making predictions
in the form of the control action output by ESN-C.
For the control strategy, the results on mixed sen-
sitivity from (Jahanshahi et al., 2012) were con-
sidered for the purpose of analysis, whereby the
bottom-hole pressure pyp, is controlled by adjust-
ing the choke opening u;. Also as in (Jahanshahi

et al., 2012), the value of the gas-lift choke opening
uo is fixed at 0.4. In this work, the control objec-
tives are pressure setpoint tracking and small and
large disturbance rejection. This allows us to test
the Echo State Network’s capacity to globally con-
trol the well model, although no formal guarantee
is presented.

4 Results and Discussion

4.1 Setup

The results of the ESN-based control of the well-
head model are given in this section by simu-
lation analyses carried out using the values for
the controller’s parameters in Table 1, which lists
the value for each parameter of the controller de-
scribed in Section 2.

Parameter Value
~: Leak Rate 0.3
p: Spectral Radius of WX | 0.999
6: Prediction Timesteps 3
1. Sparseness of W7} 0

N: Number of Neurons 1000
fi: Scaling Factor of WY 0.5
fi+ Scaling Factor of W{ | 0.1
Ts: Sampling Time 10 s

Table 1: Parameter value list for the Recurrent
Neural Network controller.

First, a random reservoir was selected with
p = 0.999 (shown empirically to produce rich
reservoirs with the Echo State Property). Since
performance depends on the randomly initialized
weights W1, Wi and Wy, a configuration which
can guarantee setpoint tracking must be found.
To find “working” weights, 3000 timesteps simula-
tions were run with the same setpoint signal. If
the reservoir manages to track the setpoint, the
weights are saved and used in the next exper-
iments. Around 5 trials were needed to find a
“working” reservoir.

Then, the following procedures were executed
for finding the values in Table 1. The neu-
ral network was implemented using CUDAmat,
a GPU library for Python, due to high dimen-
sional matrix multiplication. Due to a previous
work (Waegeman et al., 2012) stating that sparse-
ness has little effect on tracking, the network is
fully dense, so ¢ = 0. The scaling factors f; and
fi were chosen arbitrarily. The neurons’ number
N = 1000 was chosen due to the large training
errors at lower values for N. The sampling time
T, = 10s was set in order to avoid oversampling of
the model. The parameters v and ¢ were found by
grid search, where the goal was to minimize the
sum of the quadratic error between [k + §] and
ylk + 0], Vk when testing the reservoir in track-
ing the same setpoint for 3000 timesteps (as in



the search procedure for the “working” weights de-
scribed previously). The optimal ¢ between 1 and
50 was 3. The values 1 < § < 10 for the timestep
delay performed better in terms of settling time.
The leak rate v was tested from 0.1 to 1. The
best result was obtained with v = 0.3, proba-
bly because it allows the reservoir’s state to carry
enough information about the plant’s past out-
puts for the control to work (Jaeger, 2001),(Jaeger
et al., 2007). o was set to 1 (other values showed
poor performance or affect numerical stability).
Although Waegeman et al. (2012) utilized o = 10
for their applications, but this value did not work
for us probably due to the nonlinearities of the
well model. For simulation of the oil well, the
platform Jmodelica was used because of its inter-
face with Python 2.7, where the control loop was
implemented. The plant output y[k] is scaled from
[165, 193] bar to [0,1] before feeding it as input to
the ESN.

4.2 Experiments

To show the performance of the control loop de-
scribed in this work, five types of experiments were
carried out. They were inspired by Jahanshahi
et al. (2012), which showed an H., approach to
solve this problem. The ESN control loop is tested
in order to verify whether it can globally track ref-
erence signals and reject disturbances.

Figure 4 and Figure 5 showcase the first ex-
periment of tracking, where we test the capabil-
ity of the ESN controller to take the bottom-hole
pressure to different operating points in its do-
main over time. For all the plots featured in this
work, the first subplot’s dashed line is the desired
bottom-hole pressure and the solid line is the ac-
tual ppp. The uy described in the second plot is the
choke opening and the €,,¢4, in the third plot is
the mean error. For the plots which are not Figure
4 and Figure 5, the transient due to intense learn-
ing at the beginning of the experiment can not be
clearly inspected due to scaling reasons, though
the effect is the same for all the experimetns.
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Figure 4: First hour of the tracking experiment
simulation.

The first plot shows the manipulated variable
being controlled, where the solid and dashed lines
represent the actual output and the desired out-
put over time. The second plot shows the con-
trol signal over time, while the third plot dis-
plays the “learning curve”, which is egeanlk] =
kiﬂemean [k —1] ng}l, the time evolution of the
mean quadratic training error over all previous
time steps. Although tracking is achieved, poor
behavior with damping takes place in the first few
minutes since learning is still insufficient, as shown
in Figure 4. The system is better damped after
the convergence of the RLS training, i.e., when
the mean training error is in the order of 1073.

Figure 6 shows the result after applying small
disturbances in the gas-lift inlet pressure p,s of —3
and of 43 bar, respectively, while keeping fixed
the bottom-hole pressure setpoint. The distur-
bance ceases at 27, 7h. The return to the setpoint
is slower than the mixed sensitivity H., approach
presented in Jahanshahi et al. (2012). The maxi-
mum deviation over the reference signal was lower
than 0.2 bar, which is quite low. Disturbances can
be thought of changes in the nature of the model
during the control task. Here, we note that the

simulation time (h)

Figure 5: Tracking experiment simulation. This
plot is a direct continuation of the simulation in
Figure 4.
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Figure 6: Simulation of disturbance in the gas-lift
inlet pressure pys of —3 and of +3 bar at times:
5.5h and 16.6.



RLS training of the ESN can cope with distur-
bances quite well due to the presence of the for-
getting factor A, which boosts RLS’s reaction to
changes in the model.

Figure 7 shows that the control loop can cope
with larger changes in the model, i.e., disturbances
of £30 bar in the gas-lift inlet pressure. The dis-
turbance ceases at 20h Although the slow conver-
gence compromises effective tracking, the values
deviate no more than 2 bar. This shows that large
disturbance rejection is possible using Echo State
Networks for control.

In order to further test the capabilities of the
proposed ESN controller, we carried out experi-
ments with the goal of not only tracking but also
of disturbance rejection during the same simula-
tion. Figures 8 and 9 show the effect of small dis-
turbances and of large disturbances, respectively,
and with starting times, duration and magnitude
equivalent to the previous experiment on distur-
bance rejection.
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Figure 7: Same experiment as in Figure 6, except
with a larger load disturbance of —30 and of +30
bar in py, at times: 5.5h and 16.6.

1700 =1 p.bb.(bar)———= ired p_bh (Bar)
165 H n i h L H
1.0

0.8

0.6

0.4 H : e :

0.2 : +——prod:-choke-opening

0.0 P i i H P
10° T T

107

102 \\s_\

102 Pt}

10° | L +—...training error (choke)...:

10° : :

= p.gs (bar)

H i i i

5 10 15 20 25 30
simulation time (h)

Figure 8: Experiment showcasing both the track-
ing aspect and the low magnitude of the effect of
the disturbance.

We can note that tracking is still possible even
with the model changing dynamically due to the
disturbances applied. Besides, in Figure 9,when
the setpoint ppp, = 167 bar with pys = 170 bar,
the production choke opening is at its maximum.
However, when p,s changes from 170 bar to 230
bar, the closed loop system is able to track the
setpoint with no oscillations or large overshoot,
showing the absence of windup-like effects on the
control loop.

5 Conclusions

This work has shown that an online learning con-
trol framework based on Echo State Networks and
Recursive Least Squares is able to learn the inverse
model of a system with strong nonlinearities and
simultaneously control the same plant. Usually,
the control of such a system, whose model is un-
known, form an ill-posed problem. Considering
this, it is relevant to highlight that this frame-
work is able to learn an unknown model of the
system on the fly: it requires no a priori knowl-
edge of the system to be controlled. Further-
more, it effectively performs disturbance rejection
with smaller overshoots than the ones obtained
with linear approaches based on H, (Jahanshahi
et al., 2012). On the other hand, the disturbance
rejection takes longer time to converge when com-
pared to (Jahanshahi et al., 2012) (probably due
to the RLS method used for the weight’s update).

Although the computational cost of the con-
trol framework for one iteration is high (specially
for large reservoirs), this does not represent an
impediment in controlling such systems exhibit-
ing slow dynamics, like the well model considered
here. The second, most critical problem stems
from the erratic transient behavior that can hap-
pen in the first iterations due to the intense pe-
riod of inverse model learning taking place dur-
ing this start-up period. Future work would aim
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Figure 9: Same experiment as in Figure 8, except
with a larger load disturbance.



at devising methods that guarantee the protec-
tion of the plant in view of this initial response
of the closed loop, e.g., by observing another type
of controller for the first iterations. Another issue
is related to the procedure described here to ini-
tialize (randomly) the reservoir weights in order
to find a “working” reservoir when considering a
real plant. In this case, this procedure should be
carried out using a phenomenological simulation
of the plant in the control loop. When a good
reservoir is found, it is transfered to the control of
the real physical plant.

For future works in general, other loops in this
plant could be tested. For example, using us in-
stead of u; to control pyp, or using both pp, and
another variable to control the system. Since pyy,
is difficult to measure, another controlled variable
or an observer could be used. Also, it could be
tested if convergence to a setpoint could be ob-
tained if the plant is a whole oil and gas extrac-
tion platform, or a coupling of two wells and a
riser. Considering that maximization of produc-
tion is the goal in real oil plants, and that the
control strategy presented in this work is of regu-
latory nature, an algorithm could be developed so
that the control loop also maximizes production
by integrating into it a cost function that penal-
izes pressure. Future work will also analyze the
addition of measurement noise.
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