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Abstract—Reinforcement learning methods for continuous con-
trol tasks have evolved in recent years generating a family
of policy gradient methods that rely primarily on a Gaussian
distribution for modeling a stochastic policy. However, the Gaus-
sian distribution has an infinite support, whereas real world
applications usually have a bounded action space. This dissonance
causes an estimation bias that can be eliminated if the Beta
distribution is used for the policy instead, as it presents a
finite support. In this work, we investigate how this Beta policy
performs when it is trained by the Proximal Policy Optimization
(PPO) algorithm on two continuous control tasks from OpenAl
gym. For both tasks, the Beta policy is superior to the Gaussian
policy in terms of agent’s final expected reward, also showing
more stability and faster convergence of the training process. For
the CarRacing environment with high-dimensional image input,
the agent’s success rate was improved by 63% over the Gaussian
policy.

I. INTRODUCTION

Deep Reinforcement Learning (RL) has achieved unprece-
dented results on challenging high-dimensional continuous
state-space problems, surpassing human performance in 29 out
of 49 Atari 2600 games in [1], for instance. Later, AlphaGO,
an agent that combines reinforcement learning and Monte
Carlo balanced search tree algorithms with self play was
able beat Lee Sedol, a 9th-dan, world champion [2]. In this
context, Convolutional Neural Networks (CNNSs) [3] serve as
function approximators for the Q-value function, since they
can efficiently process image inputs and learn useful feature
representations from these high-dimensional continuous state-
space domains.

Handling discrete action spaces in a deep reinforcement
task usually resumes to defining an output layer of a neural
network that has the same dimension of the action space.
If this space is small, an action can be easily drawn from
the distribution yielded by the layer’s activation. Otherwise,
finding the best action for high-dimensional or continuous
action spaces constitutes an expensive optimization process
per se, which needs to be run inside another loop, the agent-
environment cycle.

Many interesting real-world problems such as control of
robotic arms and autonomous cars require a continuous action
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space. Instead of modeling the state-action Q-value function,
model-free continuous control via reinforcement learning is
made possible by directly optimizing a policy function which
maps states to probability distributions over continuous action
spaces. This family of policy gradient methods have under-
gone important advancements allowing for high-dimensional
continuous state spaces (such as images) and continuous action
spaces [4]-[7].

To model a stochastic policy, these methods choose the
Gaussian distribution N(u1, 02), whose parameters y and o>
are to be estimated as outputs of a deep neural network.
However, many real-world applications have bounded action
spaces, usually owing to physical constraints, e.g., by the joints
of a humanoid robot or manipulator, and by the accelerator
and steering direction of a vehicle. Thus, in these cases,
this Gaussian policy, which has infinite support, introduces
a estimation bias since it can give a nonzero probability for
actions outside the valid action space.

Recently, [8] proposes to model the stochastic policy with
the Beta distribution, with parameters « and /[, such that
the resulting policy has a suitably bounded action space,
that presents no bias as the previously considered Gaussian
distribution. Instead of the mean and variance, now the outputs
of the neural network represent the policy parameters « and 3.
The Beta distribution can be used with any on- or off-policy
methods such as Trust Region Policy Optimization (TRPO)
[4] and Actor-Critic Experience Replay (ACER) [7].

So far, the Beta distribution has been evaluated only for
TRPO and ACER on a variety of problems. Proximal Policy
Optimization (PPO), which evolved from TRPO but has a
much simpler implementation and a similar performance to
ACER, still lacks experimentation with the Beta distribution.
This is the first work to report experiments on PPO with the
Beta distribution on RL applications with high-dimensional
observation spaces. Besides, our investigation focus on two
continuous control applications from OpenAl Gym, the Lunar
Lander and the Car Racing, both of which were not considered
in [8].

The benefits of the approach are better stability and faster



convergence of the training process. Furthermore, because the
estimation bias is absent, the final learned Beta policy is
superior to the final Gaussian policy. We also report results
better than state-of-the-art on the Car Racing problem.

II. BACKGROUND
A. Markov decision process

We model our continuous control reinforcement learning
task as a finite Markov decision process (MDP). An MDP
consists of a state space S, an action space A, an initial state
s0, and a reward function r(s,a) : S x A that emits a scalar
value for any transition from state s taking action a. At each
time step ¢, the agent selects an action a;4; according to a
policy 7, i.e., az11 = m(s¢), such that agent’s future expected
reward is maximized. A stochastic policy can be described as
a probability distribution of taking an action a;; given a state
st denoted as 7(als) : S — A. A deterministic policy can be
obtained by taking the expected value of the policy m(als).

B. Policy Gradient Methods

Value-based reinforcement learning methods first learn to
approximate a value function Q(s,a). The policy is ob-
tained by finding the action that maximizes the latter, e.g.,
m(s) = argmax, Q(s,a). On the other hand, policy gradient
methods optimize directly an parametrized policy 7y(a|s) that
can model Categorical or Continuous actions for discrete and
continuous spaces, respectively.

For a given scalar performance measure L(f) = v, (so),
where v,, is the true value function for mp, the policy
determined by 6, performance is maximized through gradient
ascent on L
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where p™(s) = > oo7'p(s; = s) is the unnormalized
discounted state visitation frequency in the limit [9] and «
is the learning rate.

C. Proximal Policy Optimization

Proximal Policy Optimization [5] is one of the most com-
monly used policy gradient methods. Among the several
variants for the performance measures available, we consider
the clipped surrogate objective as in [5], as follows:

LtCUP(Q) =E, min(rt(e)/l, clip(r(0),1 — €, 1+ G)At)
“4)

where 60,4 is the vector of policy parameters before the
update; r;(f) denotes the probability ratio %;
old(atist

is a hyperparameter used to clip the probability ratio by
clip(r¢(0),1—¢,1+¢), avoiding large policy updates [5]; and

A, is an estimator of the advantage function at timestep ¢,
which weights the ratio 7(6). Here, &, denotes an empirical
average over a finite set of samples.

The implementation of policy gradient considers a truncated
version of the Generalized Advantage Estimator (GAE), as in
[10]:
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where the policy is run for 7' timesteps (with 7' less than
the episode size). As commonly used in the literature, v and
A are discount factor and GAE parameter, respectively. To
perform a policy update, each of N (parallel) actors collect T’
timesteps of data. Then we construct the surrogate loss on
these NT' timesteps of data, and optimize it with ADAM
algorithm [11] with a learning rate «, in mini-batches of
size¢ m < NT for K epochs. Notice that Vj(s) in GAE is
learned simultaneously in order to reduce the variance of the
advantage-function estimator.

Once we use a neural network architecture that shares
parameters between the policy and value function, we must
use a loss function that combines the policy surrogate and a
value function error term. This objective is further augmented
by adding an entropy term to ensure sufficient exploration.
Combining these terms, we obtain the following objective,
which is (approximately) maximized at each iteration [5]:
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where S denotes an entropy bonus; L} " is the value function
(VF) squared-error loss (Vy(s;) — V,"*®)2, with V,"*"® = r, +
YVo(si+1); and cl, ¢2 are coefficients for the VF loss and
entropy term, respectively.

D. Gaussian Distribution

The Gaussian distribution is defined by the following prob-
ability density function:

flo o) = ——e —1(x_“>2 ®)
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whose parameters 4 and o are to be estimated by a deep
neural network that models a so-called Gaussian policy, i.e.,
a parametrized policy mg(als) ~ N (u, 02).

Therefore, when acting in stochastic mode, the agent sam-
ples the policy whereas in deterministic mode, w(a|s) = p.
Since the Gaussian distribution has an infinite support, these
sampled actions are clipped to the agent’s bounded action
space.




E. Beta Distribution

The Beta distribution has finite support and can be intu-
itively understood as the probability of success, where o — 1
and 5 — 1 can be thought of as the counts of successes and
failures from the prior knowledge, respectively. For a random
variable « € [0, 1], the Beta probability density function is
given by:

, _ _T(ap)
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where T'(.) is the Gamma function, which extends the factorial
to real numbers. For o, 5 > 1, the distribution is uni-modal,
as illustrated in Fig. 1. When acting deterministically, the Beta
policy outputs my(a|s) = a/(a+3). The «, 8 parameters that
define the shape of the function are obtained as outputs of
a deep neural network representing the parametrized policy
mo(als).
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Fig. 1. Beta probability density function for different «, 3 pairs

F. Bias due to boundary effect

Modeling a bounded action space by a probability dis-
tribution with infinite support possibly introduces bias. As
a result, the biased gradient imposes additional difficult in
finding the optimal policy using reinforcement learning. The
policy gradient estimator to optimize the parameters 6 in (3),
using () as the target, can be obtained by differentiating (1),
as follows:

VoL(6;) :/Sp”(s)/Am;(cds)Vg log mp(als)Q™ (s|a)dads
(10)

where Q™ (s,a) is a state-action value function for a policy
mg. Thus, the policy gradient estimator using () as the target
is given by:

9q = Ve logmg(als)Q™ (s, a) (11)

This gradient is estimated by averaging n samples with a fixed
policy g, so that

1 n
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Let A = [—h, h] be an uni-dimensional action space, with
a € A. In the case of an infinite support policy, an action a’ ¢
A is eventually sampled, to which the environments responds
as if the action is either A or —h. The biased policy gradient
estimator would be given by g; = Vg logmg(als)Q"(s]a’) in
this case. Besides, focusing on the inner integral of (10), the
bias is computed as follows (also shown in [8]):
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These last two integrals evaluate to zero if the policy’s
distribution support is within the action space A.

III. EXPERIMENTS

This section presents results for the proximal policy gradient
method (PPO) on two continuous control problems from
OpenAi gym [12]: the LunarLanderContinuous-v2 with low-
dimensional state space; and the CarRacing-vO0 with high-
dimensional image input (Table I).

For all architectures, the last two layers output two 2-
dimensional real vectors. For the Gaussian distribution, each
dimension of the policy outputs its mean p and its standard
deviation o, whereas for the Beta distribution the network
outputs its parameters « and S >1. Here, 1 is added to a
softplus layer log(1 + exp(x)) to ensure both o and (3 are
larger than 1. Our implementation for PPO was based on a
popular reinforcement learning library found in [13].

TABLE I
ENVIRONMENTS
Environment S]] LAl
LunarLander 8 2
CarRacing 96x96x3 3

For each environment, we trained five models using different
seeds for both the Gaussian and Beta distributions for a fixed
number of total time steps. After completing the training,
each model was evaluated in 100 consecutive episodes in
both stochastic mode (sampling from the distribution) and
deterministic mode (using the average of each distribution as
the optimal action).



The hyperparameters for PPO can be seen in Table II for
both control problems. Notice that the PPO configuration for
the Lunar Lander was adapted from the one used for the
MuJoCo environment in [5], whereas for the CarRacing, the
parameters found in Atari [1] were used as a starting point.

TABLE II
HYPERPARAMETERS FOR TRAINING
Lunar Lander CarRacing
Horizon (T) 2048 500
Parallel environments (/N) 1 8
Adam step size (Ir) 3x107%xa 25x1074 xa
Number of PPO epochs (K) 10 10
Mini-batch size (m) 32 64
Discount () 0.99 0.99
GAE parameter (\) 0.95 0.95
Clipping parameter () 0.2 0.1
Value Function coefficient (c1) 0.5 0.5
Entropy coefficient (c2) 0 0.01
Total timesteps 106 5 x 106

a is linearly annealed from 1 to O over the course of learning

A. LunarLanderContinuous-v2

The LunarLanderContinuous-v2 environment simulates the
landing of a space module on the moon. The overall objec-
tive corresponds to landing the module on the lunar surface
delimited by two flags, approaching zero speed at the final
step (Fig. 2). It has an unbounded, 8-dimensional observation
space and a 2-dimensional action space. The actions are the
main engine throttle and the secondary engine throttle, both
bounded in the interval [0, 1]. The agent loses points for firing
up the engines and for crashing (landing at high speed). The
simulation is considered solved if the agent manages to score
at least 200 points [14].

The agent follows an actor-critic framework, where the actor
mo(als) consists of a neural network made of 3 fully-connected
layers of 64 units each, with tanh activation functions. The
output layer has 2 linear neurons to model either the Gaussian
or the Beta distribution over the actions. The critic Vj, (s)
does not share layers with the actor, but has an equivalent
architecture of 3 hidden layers with only one output neuron
which represents the value function.

Fig. 2. LunarLanderContinuous-v2 Environment

B. CarRacing-v0

The CarRacing-v0 environment [15] simulates an au-
tonomous driving environment in 2D. For each episode, a
random track with 12 curves is generated. Each track is
comprised of N tiles, with N ranging from 250 to 350. The
agent receives 1000/N points for visiting each tile and loses
0.1 point for each frame. The episode ends in one of three
situations:

1) Agent visited all tiles

2) Agent does not visit all tiles in 1000 frames

3) Agent gets too far way from the track and falls in the
abiss (-100 points added)

Therefore, if the agent visits all tiles in 732 frames, the
reward is 1000 - 0.1*%732 = 926.8 points. Should the agent
miss one or more tiles in its first lap attempt, the episode
keeps on until the agent visit missing frame or the time limit
is reached. The task is considered to be solved if the agent
is able to get an average reward of at least 900 points in 100
consecutive trials (episodes).

The observation space consists of top down images (Fig. 3)
of 96x96 pixels and three (RGB) color channels. The latest
four image frames were stacked and given as input to the
agent’s network after rescaling and preprocessing them to gray
scale (totalling 84x84x4 input dimensions). The action space
has three dimensions: one encodes the steering angle and is
bounded in the interval [—1,+1]. The other two dimensions
encode throttle and brake, both bounded to [0, 1].

For our implementation, throttle and brake have been
merged on a single dimension so that on a given step, the agent
does not simultaneously accelerates and brakes. We believe
this is a more representative structure of real world systems:
separated control inputs (throttle/brake) but single activation
mechanism (right foot). In practice, one output neuron is
responsible for both actions, making the output of the agent
to be a two-dimensional vector. With this approach, we were
able to make the agent learn effectively, mainly because it
does not enter a deadlock state resulting from accelerating and
braking at the same time. If we did not follow this approach,

Fig. 3. CarRacing-v0 Environment



learning to control the vehicle would not take place. So far,
we were not able to find other work in the literature that takes
advantage on the aforementioned approach. Also, notice that
we have not changed the original reward signal as some other
works might have done.

The actor-critic network resembles that of [1] with respect to
the shared encoder base comprised of the first 3 convolutional
layers. Instead of connecting directly to the output layer as in
[1], the shared base has an additional fully connected (FC)
layer with 512 units. The critic Vp, (s) specializes further
with its exclusive 1 FC layer of 512 units, that connects to a
final output. The actor mg(als) has its own 2 FC layers with
512 units each on top of the shared base. The output layer is
equivalent to the one from Section III-A, but its two neurons
now refer to the steering angle or acceleration (brake/throttle).

IV. RESULTS AND DISCUSSION
A. LunarLanderContinuous-v2

For the LunarLanderContinuous-v2 environment, we ob-
serve that using a Beta distribution allow for both a faster con-
vergence and higher total reward during training. Five agents
were trained with the same hyperparameters and different
seeds.

After a million times steps, training is frozen and we
evaluated each agent for 100 episodes in deterministic mode
(using the mean of the policy’s distribution as the action) and
in stochastic mode (sampling the policy’s distribution).

For the Gaussian distribution, we observe that the perfor-
mance of the agents hovers around 225.7 and 219.0 points
for the deterministic and stochastic policies, respectively. For
the Beta distribution, we observe the agents perform at 267.0
(deterministic) and 273.6 points (stochastic). It is worth noting
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Fig. 4. Average rewards for five agents on the Lunar Lander task trained with
Beta or Gaussian distribution for 1 million steps. The solid line represents
the mean over a moving window of the previous 10 episodes for these five
agents. The shaded area represents the interval between the minimum reward
and maximum reward.
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Fig. 5. Lunar Lander results: comparison of the Gaussian policy to the
Beta policy in terms of the average rewards obtained by agents for 100
consecutive episodes after training. In blue (red), the average reward and
standard deviation for each one of 5 agents using the Gaussian (Beta) policy.
Both deterministic and stochastic policies were employed for evaluation. The
winning threshold given by the horizontal black line represents the minimum
threshold for successful completion of the task. Agents powered by the Beta
distribution achieved superior performance and less variance.

that Agents B4 and B5, which were trained with the Beta
distribution, were able to score at least 200 points for all
100 episodes (Fig. 5) whereas the best agent trained with
the Gaussian distribution (G3, deterministic policy) was able
to score above the 200 points threshold for 92% of the 100
evaluation episodes. We can also observe that the variance of
the Gaussian policy is higher than that of the Beta policy, even
at the latest training iterations (Fig. 4) or after training ends
(Fig. 5).

B. CarRacing-v0

For the CarRacing-v0 environment, the number of agent-
environment interactions was fixed to 5 million steps during
training. Afterwards, an evaluation of the agent’s performance
takes place, measured as the average reward in 100 consecutive
episodes. The task is solved if this value is at least 900 points.
We have observed that agents trained with Beta and Gaussian
distributions have a similar convergence rate during training
time. In Figure 6, we show the average reward over a moving
window of 10 episodes, along the training process. Each policy
optimization takes in 500 environment steps across 8 parallel
environments.

Using the performance measure for 100 consecutive
episodes training, in Fig. 7, we show that the stochastic policy
presented better average performance than the deterministic
policy for both distributions. For the Gaussian distribution, we
observe that the five agents with the deterministic policy fail to
follow the track, presenting an average score of 370.4 points
that is much lower than the required 900 score points to solve
the task. In stochastic mode, the policy presents an improved
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Fig. 7. Car Racing results after training: The evaluation followed the same
procedure used for Lunar Lander (plots can be understood as in Fig. 5). For
this task, the stochastic policy clearly yielded better performance than the
deterministic one.

performance with an average score of 890.5 points, although
in 38% of the 100 episodes the agents were not able to pass

the winning threshold. For the Beta distribution, the agents’
performance with the deterministic policy improves over the
Gaussian policy by 320%, with average score of 816.1 points.
These agents surpass the winning threshold in 26% of the
evaluation episodes. In the stochastic mode, all agents were
able to score above the winning threshold in at least 60% of
the 100 of episodes played by each agent. All five agents with
the Beta policy were able to successfully solve the game since
each one of them reached a performance higher 900 points.
This was not the case for the stochastic Gaussian policy,
where each agent performed less than the threshold of 900
points. The best performing agent, B2, consistently reached
scores above the other five agents, and it’s the chosen agent
to compare our approach with other works in the literature in
the next section. Fig. 8 shows the resulting Gaussian and Beta
policies at a specific timestep of the simulation, after training,
when the car was about to turn left as it can be seen on the
image fed to the policy network. The sampled distributions
for both policies show that the Gaussian distribution, with its
infinite support, falls outside the bounded action space, what
is associated with the bias calculated in Section II-F. On the
other hand, the Beta distribution fits well within the bounded
action space, yielding an unbiased policy gradient estimator.
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Fig. 8. Illustration of the Gaussian and Beta stochastic policy distributions in relation to the action space of the CarRacing environment. For a fixed observation
s (preprocessed image in left plot), we sampled the Gaussian and Beta policies for 5000 actions. For the Gaussian distribution, a significant portion of the
actions fall out of the valid direction and brake/throttle range (both [—1, 1]), whereas for the Beta distributions, all actions fall within boundaries.

C. Considerations on the CarRacing-v0 environment and
other approaches

Simulation environments designed as test beds for reinforce-
ment learning algorithms are primarily used in two ways:

1) To benchmark new algorithms or techniques without
focusing particularly on a specific task;

2) To develop methods to solve a specific simulation task
or benchmark, such as scoring more than 900 points on
average in 100 consecutive runs for the CarRacing-v0
env, in an attempt to beat the other reported results.

Although our primary objective was the former, we em-
phasize that our work happens to fulfill to the latter as well.
OpenAl CarRacing-v0O Leaderboard [16] hosts a series of self-
reported scores. We compare our results only to those found
in peer-reviewed articles (Table III), since they provide a basis
for comparison and discussion.

Among the works that use Car Racing as a test bed, [17]
claim to have been the first to solve the problem, using a recur-
rent world model. Other attempts included Deep Q-Networks
with action-space discretization [18] and Genetic algorithms
[19]. Other work that uses the Car Racing environment for
benchmarking other algorithms are [20] and [21], and have
been included for reference.

TABLE III
CARRACING-V0O LEADERBOARD

Method Average Evaluation Score

PPO with Beta (Ours) 913 +/- 26
‘World models [17] 906 +/- 21
Adapted DQN [18] 905 +/- 24
Genetic Algorithms [19] 903 +/- 72
PPO with Gaussian (Ours) 897 +/- 41
Weight Agnostic NN [20] 893 +/- 74
PPO [21] 740 +/- 86
Random agent -32 +/- 6

V. CONCLUSIONS

In this study, we observed that agents trained with PPO
using a Beta distribution for the stochastic policy presented
faster and more stable convergence of the training process
(mainly for the Lunar Lander task), while their final per-
formance was significantly superior to those trained with a
Gaussian distribution. Thus, the Beta distribution is better
able to satisfy the requirements of real-world applications with
bounded action spaces, overcoming the estimation bias of the
Gaussian policy.

Our results also show that continuous control with bounded
action space for challenging car racing with random tracks
and a high-dimensionality of the observation space (based
on images) is much facilitated when the Beta distribution
is employed. In fact, the agent’s success in this task is
considerably affected by this approach, achieving the best
score so far on the CarRacing-vO Leaderboard among the
published work in literature. Finally, the results suggest that
the Beta distribution should be a standard choice for those
type of tasks.

Originally proposed in [8], the Beta distribution was tested
in their work with TRPO/ACER on Atari games, which
have high-dimensional observation space, but a discrete action
space; and on robotic control tasks with a continuous action
space and a low-dimensional observation space. In this work,
we proposed to use the Beta distribution with PPO on high-
dimensional image inputs and continuous action spaces.

We plan to extend these experiments to other types of rein-
forcement learning algorithms that are more sample efficient,
in an attempt to verify if the Beta distribution transfers to other
setups. Besides, experiments with more complex autonomous
navigation in urban scenarios could benefit from the faster and
more stable convergence as the training of end-to-end models
is not a trivial task.
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